将函数f(x)=2x2(0<x≤)展开成周期为2π的正弦级数.设正弦级数和函数为S(x),求

1个回答
展开全部
摘要 根据傅里叶级数的公式,要将函数$f(x)$展开成周期为$2\pi$的正弦级数,需要求出其系数$a_n$和$b_n$,公式如下:
$$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos nx + b_n \sin nx \right)$$
其中,
$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \mathrm{d}x$$
$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \mathrm{d}x$$
由于$f(x)$在$(0,2\pi)$上是$2x^2$,在$(-\pi,0)$上是$2(\pi+x)^2$,因此有:
$$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \mathrm{d}x = \frac{1}{\pi} \left( \int_{0}^{\pi} 2x^2 \mathrm{d}x + \int_{-\pi}^{0} 2(\pi+x)^2"
咨询记录 · 回答于2024-01-09
将函数f(x)=2x2(0
根据傅里叶级数的公式,要将函数$f(x)$展开成周期为$2\pi$的正弦级数,需要求出其系数$a_n$和$b_n$。公式如下: $$f(x) \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} \left( a_n \cos nx + b_n \sin nx \right)$$ 其中, $$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \mathrm{d}x$$ $$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \mathrm{d}x$$ 由于$f(x)$在$(0,2\pi)$上是$2x^2$,在$(-\pi,0)$上是$2(\pi+x)^2$,因此有: $$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \mathrm{d}x = \frac{1}{\pi} \left( \int_{0}^{\pi} 2x^2 \mathrm{d}x + \int_{-\pi}^{0} 2(\pi+x)^2"
因此有: $$a_0 = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \mathrm{d}x = \frac{1}{\pi} \left( \int_{0}^{\pi} 2x^2 \mathrm{d}x + \int_{-\pi}^{0} 2(\pi+x)^2 \mathrm{d}x \right) = 2\pi^2$$ $$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx \mathrm{d}x = \frac{4}{\pi} \int_{0}^{\pi} x^2 \cos nx \mathrm{d}x = \frac{4}{\pi n^2} ((-1)^n - 1)$$ $$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx \mathrm{d}x = 0$$ 因此,$f(x)$的正弦级数展开为: $$S(x) = \pi^2 + \sum_{n=1}^{\infty} \frac{4}{\pi n^2} ((-1)^n - 1) \cos nx$$
因此,$f(x)$的正弦级数展开为:$$S(x) = \pi^2 + \sum_{n=1}^{\infty} \frac{4}{\pi n^2} ((-1)^n - 1) \cos nx$$
下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消