
一元二次方程ax^2+ bx+ c=0的根的判别式是什么?
1个回答
展开全部
根的判别式是△=b²-4ac。根的判别式是判断方程实根个数的公式,在解题时应用十分广泛,涉及到解系数的取值范围、判断方程根的个数及分布情况等。
根的判别式是判断方程实根个数的公式,在解题时应用十分广泛,涉及到解系数的取值范围、判断方程根的个数及分布情况等。一元二次方程ax^2+bx+c=0(a≠0)的根的判别式是b^2-4ac,用“△”表示。
根的判别式小于0,最简单的来说,从抛物线上来看,这是个开口向上的抛物线,不等式要满足X在R上都成立,就意味着以y=x2-(a+2)X+4的抛物线不能和X轴有交点,判别式<0 无交点,=0 一个交点,>0 2个,不知道你能不能明白,电脑打字也不方便作图给你看。根的判别式是判断方程实根个数的公式,在解题时应用十分广泛,涉及到解系数的取值范围、判断方程根的个数及分布情况等。
一元二次方程ax^2+bx+c=0(a≠0)的根的判别式是b^2-4ac,用“△”表示(读做“delta”)。
扩展资料
一般地,式子b2-4ac叫做一元二次方程ax2+bx+c=0根的判别式,通常用希腊字母“Δ”表示它,即Δ=b2-4ac.
当Δ>0时,方程ax2+bx+c=0(a≠0)有两个不等的实数根;
当Δ=0时,方程ax2+bx+c=0(a≠0)有两个相等的实数根;
当Δ<0时,方程ax2+bx+c=0(a≠0)无实数根.
例题讲解:已知关于x的一元二次方程(x-3)(x-2)=|m|。
求证:对于任意实数m,方程总有两个不相等的实数根;
证明:原方程可化为
x2-5x+6-|m|=0,(很重要的的一步)
∴Δ=(-5)2-4×1×(6-|m|)
=25-24+4|m|
=1+4|m|.
∵ |m|≥0,
∴ 1+4|m|>0.
根的判别式是判断方程实根个数的公式,在解题时应用十分广泛,涉及到解系数的取值范围、判断方程根的个数及分布情况等。一元二次方程ax^2+bx+c=0(a≠0)的根的判别式是b^2-4ac,用“△”表示。
根的判别式小于0,最简单的来说,从抛物线上来看,这是个开口向上的抛物线,不等式要满足X在R上都成立,就意味着以y=x2-(a+2)X+4的抛物线不能和X轴有交点,判别式<0 无交点,=0 一个交点,>0 2个,不知道你能不能明白,电脑打字也不方便作图给你看。根的判别式是判断方程实根个数的公式,在解题时应用十分广泛,涉及到解系数的取值范围、判断方程根的个数及分布情况等。
一元二次方程ax^2+bx+c=0(a≠0)的根的判别式是b^2-4ac,用“△”表示(读做“delta”)。
扩展资料
一般地,式子b2-4ac叫做一元二次方程ax2+bx+c=0根的判别式,通常用希腊字母“Δ”表示它,即Δ=b2-4ac.
当Δ>0时,方程ax2+bx+c=0(a≠0)有两个不等的实数根;
当Δ=0时,方程ax2+bx+c=0(a≠0)有两个相等的实数根;
当Δ<0时,方程ax2+bx+c=0(a≠0)无实数根.
例题讲解:已知关于x的一元二次方程(x-3)(x-2)=|m|。
求证:对于任意实数m,方程总有两个不相等的实数根;
证明:原方程可化为
x2-5x+6-|m|=0,(很重要的的一步)
∴Δ=(-5)2-4×1×(6-|m|)
=25-24+4|m|
=1+4|m|.
∵ |m|≥0,
∴ 1+4|m|>0.

2025-02-09 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询