你能把分离常数法求函数值域的方法详细的给我讲一讲吗?谢谢
2个回答
展开全部
对于f(x)=(ax+b)/(cx+d)这类函数或化为此类的,可用分离常数法求值域,
例如y=x/(2x+1)=(x+1/2-1/2)/2(x+1/2)=1/2-1/2(2x+1),
∵1/2(2x+10≠0,
∴函数的值域为{y/y≠1/2,y∈R},
例如y=(x^2-4x-5)/(x^2-3x-4)
=[(x-5)(x+1)]/[(x-4)(x+1)]
=(x-5)/(x-4)(x≠-1)
∴y=(x-5)/(x-4)=1-1/(x-4)(x≠-1且x≠4),
∴y≠1,且y≠6/5,y∈R,
实质就是y≠a/c,
如果学了反函数,也可以用函数和它的反函数的定义域和值域的互逆关系求解。不懂喊我。
例如y=x/(2x+1)=(x+1/2-1/2)/2(x+1/2)=1/2-1/2(2x+1),
∵1/2(2x+10≠0,
∴函数的值域为{y/y≠1/2,y∈R},
例如y=(x^2-4x-5)/(x^2-3x-4)
=[(x-5)(x+1)]/[(x-4)(x+1)]
=(x-5)/(x-4)(x≠-1)
∴y=(x-5)/(x-4)=1-1/(x-4)(x≠-1且x≠4),
∴y≠1,且y≠6/5,y∈R,
实质就是y≠a/c,
如果学了反函数,也可以用函数和它的反函数的定义域和值域的互逆关系求解。不懂喊我。
2012-10-20
展开全部
对于f(x)=(ax+b)/(cx+d)这类函数或化为此类的,用分离常数法求值域,
例如y=x/(2x+1)=(x+1/2-1/2)/2(x+1/2)=1/2-1/2(2x+1),
∵1/2(2x+10≠0,
∴函数的值域为{y/y≠1/2,y∈R},
例如y=(x^2-4x-5)/(x^2-3x-4)
=[(x-5)(x+1)]/[(x-4)(x+1)]
=(x-5)/(x-4)(x≠-1)
∴y=(x-5)/(x-4)=1-1/(x-4)(x≠-1且x≠4),
∴y≠1,且y≠6/5,y∈R,
就是y≠a/c,
例如y=x/(2x+1)=(x+1/2-1/2)/2(x+1/2)=1/2-1/2(2x+1),
∵1/2(2x+10≠0,
∴函数的值域为{y/y≠1/2,y∈R},
例如y=(x^2-4x-5)/(x^2-3x-4)
=[(x-5)(x+1)]/[(x-4)(x+1)]
=(x-5)/(x-4)(x≠-1)
∴y=(x-5)/(x-4)=1-1/(x-4)(x≠-1且x≠4),
∴y≠1,且y≠6/5,y∈R,
就是y≠a/c,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询