如图,已知圆O的半径为2,弦AB的长为2根号3,点C与点D分别是劣弧AB与优弧ADB上的任一点

如图,已知圆O的半径为2,弦AB的长为2根号3,点C与点D分别是劣弧AB与优弧ADB上的任一点(点C,D均不与点A,B重合),求:(1)∠ADB的度数;(2)三角形ABD... 如图,已知圆O的半径为2,弦AB的长为2根号3,点C与点D分别是劣弧AB与优弧ADB上的任一点(点C,D均不与点A,B重合),求:
(1)∠ADB的度数;
(2)三角形ABD的最大面积。
只要第二个问的过程!在线等!
展开
 我来答
炎魔上古
2013-10-14 · TA获得超过368个赞
知道答主
回答量:71
采纳率:0%
帮助的人:23.2万
展开全部
连接OA与OB由题可得角OAB=角OBA=30度,所以角AOB=120度,所以角ADB=60度。这个我就写出答案吧。步骤很难写。当D为最高点的时候三角形ABD的面积最大。S=3倍根号3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
马尾和少女
2013-12-18 · TA获得超过131个赞
知道答主
回答量:2
采纳率:0%
帮助的人:2872
展开全部
解:(1)连接OA、OB,作OE⊥AB于E,∵OA=OB,∴AE=BE,Rt△AOE中,OA=2,AE=3 ,
所以sin∠AOE=3√2 ,
∴∠AOE=60°,∠AOB=2∠AOE=120°,又∠ADB= 1/2∠AOB,
∴∠ADB=60°,又四边形ACBD为圆内接四边形,∴∠ACB+∠ADB=180°,从而有∠ACB=180°-∠ADB=120°;
(2)作DF⊥AB,垂足为F,则:S△ABD=1/2×2√3DF
显然,当DF经过圆心O时,DF取最大值,
从而S△ABD取得最大值,此时DF=DO+OF=2+2sin30°=3,s△ABD=1/2 ×6√3,
即△ABD的最大面积是3√3 .
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式