4个回答
展开全部
可以用二项展开:
√cosx -1 = [1+(cosx-1)]^(1/2) -1 ~ 1 + (1/2)(cosx-1) - 1 = (1/2)(cosx-1)
√cosx -1 = [1+(cosx-1)]^(1/2) -1 ~ 1 + (1/2)(cosx-1) - 1 = (1/2)(cosx-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x->0
cosx = 1-(1/2)x^2 +o(x^2)
√cosx =[1-(1/2)x^2 +o(x^2)]^(1/2) = 1-(1/4)x^2 +o(x^2)
(1+(sinx)^2) = 1+ x^2+o(x^2)
(1+(sinx)^2)^(1/3) =[1+ x^2+o(x^2)]^(1/3) =1+(1/3)x^2 +o(x^2)
√cosx - (1+(sinx)^2)^(1/3)
=[ 1-(1/4)x^2 +o(x^2)] -[1+(1/3)x^2 +o(x^2)]
=-(7/12)x^2 +o(x^2)
lim(x->0+) [√cosx - (1+(sinx)^2)^(1/3) ]/x^2
=lim(x->0+) -(7/12)x^2/x^2
=-7/12
cosx = 1-(1/2)x^2 +o(x^2)
√cosx =[1-(1/2)x^2 +o(x^2)]^(1/2) = 1-(1/4)x^2 +o(x^2)
(1+(sinx)^2) = 1+ x^2+o(x^2)
(1+(sinx)^2)^(1/3) =[1+ x^2+o(x^2)]^(1/3) =1+(1/3)x^2 +o(x^2)
√cosx - (1+(sinx)^2)^(1/3)
=[ 1-(1/4)x^2 +o(x^2)] -[1+(1/3)x^2 +o(x^2)]
=-(7/12)x^2 +o(x^2)
lim(x->0+) [√cosx - (1+(sinx)^2)^(1/3) ]/x^2
=lim(x->0+) -(7/12)x^2/x^2
=-7/12
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询