最透彻的红黑树详解(图文并茂,一文全解)
前言
刚开始接触红黑树的时候,感觉很难。其实不然,红黑树只是情况分的多了一点而已,相较于线段树,主席树等等,简单多了。对于红黑树3种插入维护4种删除维护没必要去记忆,稍作了解,对于红黑树的性质和特点,需要特别记忆。
本专栏知识点是通过零声教育的线上课学习,进行梳理总结写下文章,对c/c++linux课程感兴趣的读者,可以点击链接:C/C++Linux服务器开发/后台架构师【零声教育】-学习视频教程-腾讯课堂课程介绍详细查看课程的服务。
注意,本文图中红黑树的叶子结点默认不画出来~
二叉搜索树(又叫二叉排序树,BST):对于任意一个结点,其左子树的值必定小于该结点,其右子树的值必定大于该结点。那么中序遍历的时候,就是有序的了。理论上来说,增加,删除,修改的时间复杂度都是O(log(N))。但是它存在一个致命的问题。
退化:向树中插入[1,2,3,4,5,6],此时树退化成了一个链表,增加,删除,修改的时间复杂度退化为O(N)
添加图片注释,不超过 140 字(可选)
平衡二叉搜索树(AVL Tree):它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉搜索树。如果向树中插入[1,2,3,4,5,6]
添加图片注释,不超过 140 字(可选)
可以看到AVLTree在最坏的情况下,依然保持了“绝对的平衡”:左右两个子树的高度差的绝对值不超过1。那么AVL Tree是如何保证平衡的呢,是通过旋转,可以看到,无论是插入还是删除元素,都要去通过旋转维护整个树的平衡。
我们发现,AVL树未免太严格了一些,有没有一种数据结构,能让AVL树不那么严格平衡,降低维护平衡的开销,同时又不能像BST一样退化呢?
当然有,就是本文所写的红黑树(rbTree):
虽然插入和删除元素后,需要旋转和变色(本文中统一为维护),但是这一时间复杂度可以估算为O(1)不计
因为rbTree的第6条性质(见下文)
动三个方向,改6个指针。 通过旋转,调整左右高度,使树达到平衡。
添加图片注释,不超过 140 字(可选)
左旋leftRotate(T,x) —中右->左中
降低X结点的高度,提高X结点右结点(即Y)的高度。
添加图片注释,不超过 140 字(可选)
右旋rightRotate(T,y) —中左->中右
降低Y结点的高度,提高Y结点左结点(即X)的高度。
添加图片注释,不超过 140 字(可选)
在插入结点时,我们始终认为“插入这个结点之前,原来的红黑树是满足红黑树性质的==”,那么插入的位置容易找,就是不断的对比key,最终找到位置,那么新增的结点是什么颜色呢?我们通过性质发现:
而第四条性质,我们可以通过旋转与上色的方式修复,所以在我们插入结点的时候,我们始终认为新结点是红色
我们知道新增结点是红色,如果新结点是父节点也是红色,那么就需要维护红黑树了。
如果父结点是爷结点是左子树,可以归纳出来三种情况。同理如果父结点是爷结点是右子树,我们也可以归纳出来三种情况。但是这三种情况的差异就是旋转方向的区别而已。一共是6种情况,但是归纳出来其实是3种,读者不要搞错了。
在下面的图中:z表示新增结点,y表示叔结点
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
我们定义:
红黑树删除结点根据改结点的左右子树分为三种情况:
对不同情况的处理:
想一想,删除一个结点,该结点是什么颜色的时候才需要维护红黑树呢?
如果当前结点是父结点的左子树的情况,可以归纳出来四种情况。同理如果当前结点是父结点的右子树,我们也可以归纳出来四种情况。但是这四种情况的差异就是旋转方向的区别而已(镜像的)。一共是8种情况,但是归纳出来其实是4种,读者不要搞错了。
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)
添加图片注释,不超过 140 字(可选)