已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),(1)求数列{an}的通项公式an;(2)若数列bn满足b
已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),(1)求数列{an}的通项公式an;(2)若数列bn满足bn=log2(an+2),Tn为数列{bn...
已知数列{an}的前n项和为sn,满足Sn=2an-2n(n∈N+),(1)求数列{an}的通项公式an;(2)若数列bn满足bn=log2(an+2),Tn为数列{bnan+2}的前n项和,求Tn(3)(只理科作)接(2)中的Tn,求证:Tn≥12.
展开
1个回答
展开全部
(1)当n∈N+时,Sn=2an-2n,
则当n≥2,n∈N+时,Sn-1=2an-1-2(n-1)
①-②,an=2an-2an-1-2,an=2an-1+2
∴an+2=2(an-1+2),
∴
=2,n=1时 S1=2a1-2,∴a1=2
∴{an+2}是a1+2=4为首项2为公比的等比数列,
∴an+2=4?2n-1=2n+1,
∴an=2n+1-2
(2)证明bn=log2(an+2)=log22n+1=n+1.
∴
=
,
则Tn=
+
+…+
,
∴
Tn=
+
+…+
+
④
③-④,
Tn=
+
+
…+
-
=
+
-
=
+
-
-
=
-
∴Tn=
-
.
(3)n≥2时Tn-Tn-1=-
+
=
>0,
∴{Tn}为递增数列
∴Tn的最小值是T1=
∴Tn≥
则当n≥2,n∈N+时,Sn-1=2an-1-2(n-1)
①-②,an=2an-2an-1-2,an=2an-1+2
∴an+2=2(an-1+2),
∴
an+2 |
an-1+2 |
∴{an+2}是a1+2=4为首项2为公比的等比数列,
∴an+2=4?2n-1=2n+1,
∴an=2n+1-2
(2)证明bn=log2(an+2)=log22n+1=n+1.
∴
bn |
an+2 |
n+1 |
2n+1 |
则Tn=
2 |
22 |
3 |
23 |
n+1 |
2n+1 |
∴
1 |
2 |
2 |
23 |
3 |
24 |
n |
2n+1 |
n+1 |
2n+2 |
③-④,
1 |
2 |
2 |
22 |
1 |
23 |
1 |
24 |
1 |
2n+1 |
n+1 |
2n+2 |
1 |
4 |
| ||||
1-
|
n+1 |
2n+2 |
=
1 |
4 |
1 |
2 |
1 |
2n+1 |
n+1 |
2n+2 |
=
3 |
4 |
n+3 |
2n+2 |
∴Tn=
3 |
2 |
n+3 |
2n+1 |
(3)n≥2时Tn-Tn-1=-
n+3 |
2n+1 |
n+2 |
2n |
n+1 |
2n+1 |
∴{Tn}为递增数列
∴Tn的最小值是T1=
1 |
2 |
∴Tn≥
1 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询