1个回答
展开全部
由正弦定理
(a+c)/(sinA+sinC)=b/sinB
即8/(sin2C+sinC)=4/sin(180-3C)
整理得 sin2C+sinC=2sin3C
sin3C=sin(2C+C)=sin2CcosC+cos2CsinC=3sinC-4(sinC) ^3
2sinCcosC+sinC=6sinC-8(sinC)^3
2cosC=5-8(sinC)^2
2cosC=5-8[1-(cosC)^2]
8(cosC)^2-2cosC-3=0
cosC=-1/2(舍) 或 cosC=3/4
cosC=(b^2+a^2-c^2)/2ab=[16+8(a-c)]/8a
a=24/5,c=16/5
(a+c)/(sinA+sinC)=b/sinB
即8/(sin2C+sinC)=4/sin(180-3C)
整理得 sin2C+sinC=2sin3C
sin3C=sin(2C+C)=sin2CcosC+cos2CsinC=3sinC-4(sinC) ^3
2sinCcosC+sinC=6sinC-8(sinC)^3
2cosC=5-8(sinC)^2
2cosC=5-8[1-(cosC)^2]
8(cosC)^2-2cosC-3=0
cosC=-1/2(舍) 或 cosC=3/4
cosC=(b^2+a^2-c^2)/2ab=[16+8(a-c)]/8a
a=24/5,c=16/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询