用sql语句,怎么解决mysql数据库死锁

 我来答
在晴天的雨伞
2016-05-11 · TA获得超过6869个赞
知道大有可为答主
回答量:5761
采纳率:86%
帮助的人:1235万
展开全部
MySQL死锁问题的相关知识是本文我们主要要介绍的内容,接下来我们就来一一介绍这部分内容,希望能够对您有所帮助。
  1、MySQL常用存储引擎的锁机制
  MyISAM和MEMORY采用表级锁(table-level locking)
  BDB采用页面锁(page-level locking)或表级锁,默认为页面锁
  InnoDB支持行级锁(row-level locking)和表级锁,默认为行级锁
  2、各种锁特点
  表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低
  行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高
  页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般
  3、各种锁的适用场景
  表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用
  行级锁则更适合于有大量按索引条件并发更新数据,同时又有并发查询的应用,如一些在线事务处理系统
  4、死锁
  是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去。
  表级锁不会产生死锁。所以解决死锁主要还是针对于最常用的InnoDB。
  5、死锁举例分析
  在MySQL中,行级锁并不是直接锁记录,而是锁索引。索引分为主键索引和非主键索引两种,如果一条sql语句操作了主键索引,MySQL就会锁定这条主键索引;如果一条语句操作了非主键索引,MySQL会先锁定该非主键索引,再锁定相关的主键索引。
  在UPDATE、DELETE操作时,MySQL不仅锁定WHERE条件扫描过的所有索引记录,而且会锁定相邻的键值,即所谓的next-key locking。
  例如,一个表db。tab_test,结构如下:
  id:主键;
  state:状态;
  time:时间;
  索引:idx_1(state,time)
  出现死锁日志如下:
  ?***(1) TRANSACTION:
  ?TRANSACTION 0 677833455, ACTIVE 0 sec, process no 11393, OSthread id 278546 starting index read
  ?mysql tables in use 1, locked 1
  ?LOCK WAIT 3 lock struct(s), heap size 320
  ?MySQL thread id 83, query id 162348740 dcnet03 dcnet Searching rows for update
  ?update tab_test set state=1064,time=now() where state=1061 and time < date_sub(now(), INTERVAL 30 minute) (任务1的sql语句)
  ?***(1) WAITING FOR THIS LOCK TO BE GRANTED: (任务1等待的索引记录)
  ?RECORD LOCKS space id 0 page no 849384 n bits 208 index `PRIMARY` of table `db/tab_test` trx id 0 677833455 _mode X locks rec but not gap waiting
  ?Record lock, heap no 92 PHYSICAL RECORD: n_fields 11; compact format; info bits 0
  ?0: len 8; hex 800000000097629c; asc b ;; 1: len 6; hex 00002866eaee; asc (f ;; 2: len 7; hex 00000d40040110; asc @ ;; 3: len 8; hex 80000000000050b2; asc P ;; 4: len 8; hex 800000000000502a; asc P*;; 5: len 8; hex 8000000000005426; asc T&;; 6: len 8; hex 800012412c66d29c; asc A,f ;; 7: len 23; hex 75706c6f6164666972652e636f6d2f6 8616e642e706870; asc xxx.com/;; 8: len 8; hex 800000000000042b; asc +;; 9: len 4; hex 474bfa2b; asc GK +;; 10: len 8; hex 8000000000004e24; asc N$;;
  ?*** (2) TRANSACTION:
  ?TRANSACTION 0 677833454, ACTIVE 0 sec, process no 11397, OS thread id 344086 updating or deleting, thread declared inside InnoDB 499
  ?mysql tables in use 1, locked 1
  ?3 lock struct(s), heap size 320, undo log entries 1
  ?MySQL thread id 84, query id 162348739 dcnet03 dcnet Updating update tab_test set state=1067,time=now () where id in (9921180) (任务2的sql语句)
  ?*** (2) HOLDS THE LOCK(S): (任务2已获得的锁)
  ?RECORD LOCKS space id 0 page no 849384 n bits 208 index `PRIMARY` of table `db/tab_test` trx id 0 677833454 lock_mode X locks rec but not gap
  ?Record lock, heap no 92 PHYSICAL RECORD: n_fields 11; compact format; info bits 0
  ?0: len 8; hex 800000000097629c; asc b ;; 1: len 6; hex 00002866eaee; asc (f ;; 2: len 7; hex 00000d40040110; asc @ ;; 3: len 8; hex 80000000000050b2; asc P ;; 4: len 8; hex 800000000000502a; asc P*;; 5: len 8; hex 8000000000005426; asc T&;; 6: len 8; hex 800012412c66d29c; asc A,f ;; 7: len 23; hex 75706c6f6164666972652e636f6d2f6 8616e642e706870; asc uploadfire.com/hand.php;; 8: len 8; hex 800000000000042b; asc +;; 9: len 4; hex 474bfa2b; asc GK +;; 10: len 8; hex 8000000000004e24; asc N$;;
  ?*** (2) WAITING FOR THIS LOCK TO BE GRANTED: (任务2等待的锁)
  ?RECORD LOCKS space id 0 page no 843102 n bits 600 index `idx_1` of table `db/tab_test` trx id 0 677833454 lock_mode X locks rec but not gap waiting
  ?Record lock, heap no 395 PHYSICAL RECORD: n_fields 3; compact format; info bits 0
  ?0: len 8; hex 8000000000000425; asc %;; 1: len 8; hex 800012412c66d29c; asc A,f ;; 2: len 8; hex 800000000097629c; asc b ;;
  ?*** WE ROLL BACK TRANSACTION (1)
  ?(回滚了任务1,以解除死锁)
  原因分析:
  当“update tab_test set state=1064,time=now() where state=1061 and time < date_sub(now(), INTERVAL 30 minute)”执行时,MySQL会使用idx_1索引,因此首先锁定相关的索引记录,因为idx_1是非主键索引,为执行该语句,MySQL还会锁定主键索引。
  假设“update tab_test set state=1067,time=now () where id in (9921180)”几乎同时执行时,本语句首先锁定主键索引,由于需要更新state的值,所以还需要锁定idx_1的某些索引记录。
  这样第一条语句锁定了idx_1的记录,等待主键索引,而第二条语句则锁定了主键索引记录,而等待idx_1的记录,这样死锁就产生了。
  6、解决办法
  拆分第一条sql,先查出符合条件的主键值,再按照主键更新记录:
  ?select id from tab_test where state=1061 and time < date_sub(now(), INTERVAL 30 minute);
  ?update tab_test state=1064,time=now() where id in(......);
司空见灌
2016-06-15 · TA获得超过673个赞
知道小有建树答主
回答量:767
采纳率:73%
帮助的人:332万
展开全部
对于MySQL来说,有三种锁的级别:页级、表级、行级

页级的典型代表引擎为BDB。
表级的典型代表引擎为MyISAM,MEMORY以及很久以前的ISAM。
行级的典型代表引擎为INNODB。
-我们实际应用中用的最多的就是行锁。
行级锁的优点如下:
1)、当很多连接分别进行不同的查询时减小LOCK状态。
2)、如果出现异常,可以减少数据的丢失。因为一次可以只回滚一行或者几行少量的数据。
行级锁的缺点如下:
1)、比页级锁和表级锁要占用更多的内存。
2)、进行查询时比页级锁和表级锁需要的I/O要多,所以我们经常把行级锁用在写操作而不是读操作。
3)、容易出现死锁。
对于写锁定如下:
1)、如果表没有加锁,那么对其加写锁定。
2)、否则,那么把请求放入写锁队列中。
对于读锁定如下:
1)、如果表没有加写锁,那么加一个读锁。
2)、否则,那么把请求放到读锁队列中。
当然我们可以分别用low_priority 以及high_priority在写和读操作上来改变这些行为。

如果想要在一个表上做大量的 INSERT 和 SELECT 操作,但是并行的插入却不可能时,可以将记录插入到临时表中,然后定期将临时表中的数据更新到实际的表里。可以用以下命令实现:

mysql> LOCK TABLES real_table WRITE, insert_table WRITE;
mysql> INSERT INTO real_table SELECT * FROM insert_table;
mysql> TRUNCATE TABLE insert_table;
mysql> UNLOCK TABLES;
InnoDB 使用行级锁,BDB 使用页级锁。对于 InnoDB 和 BDB 存储引擎来说,是可能产生死锁的。这是因为 InnoDB 会自动捕获行锁,BDB 会在执行 SQL 语句时捕获页锁的,而不是在事务的开始就这么做。
行级锁的优点有:

在很多线程请求不同记录时减少冲突锁。
事务回滚时减少改变数据。
使长时间对单独的一行记录加锁成为可能。
行级锁的缺点有:

比页级锁和表级锁消耗更多的内存。
当在大量表中使用时,比页级锁和表级锁更慢,因为他需要请求更多的所资源。
当需要频繁对大部分数据做 GROUP BY 操作或者需要频繁扫描整个表时,就明显的比其它锁更糟糕。
使用更高层的锁的话,就能更方便的支持各种不同的类型应用程序,因为这种锁的开销比行级锁小多了。
表级锁在下列几种情况下比页级锁和行级锁更优越:

很多操作都是读表。
在严格条件的索引上读取和更新,当更新或者删除可以用单独的索引来读取得到时:

UPDATE tbl_name SET column=value WHERE unique_key_col=key_value;
DELETE FROM tbl_name WHERE unique_key_col=key_value;
SELECT 和 INSERT 语句并发的执行,但是只有很少的 UPDATE 和 DELETE 语句。
很多的扫描表和对全表的 GROUP BY 操作,但是没有任何写表。
表级锁和行级锁或页级锁之间的不同之处还在于:
将同时有一个写和多个读的地方做版本(例如在MySQL中的并发插入)。也就是说,数据库/表支持根据开始访问数据时间点的不同支持各种不同的试图。其它名有:时间行程,写复制,或者是按需复制。
复制代码 代码如下:

//执行SQL语句 锁掉stat_num表
$sql = "LOCK TABLES 表名 WRITE"; //表的WRITE锁定,阻塞其他所有mysql查询进程
mysql_query($sql);
//执行更新或写入操作
$sql = "UPDATE stat_num SET `correct_num`=`correct_num`+1 WHERE stat_date='{$cur_date}'";
mysql_query($sql);
//当前请求的所有写操作做完后,执行解锁sql语句
$sql = "UNLOCK TABLES";
mysql_query($sql);
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
lzf3211
2016-05-17 · TA获得超过238个赞
知道小有建树答主
回答量:803
采纳率:0%
帮助的人:362万
展开全部
解锁:

declare @spid int
Set @spid = 57 --锁表进程
declare @sql varchar(1000)
set @sql='kill '+cast(@spid as varchar)
exec(@sql)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
爱可生云数据库
2020-07-06 · MySQL开源数据库领先者
爱可生云数据库
爱可生,金融级开源数据库和数据云服务整体解决方案提供商;优秀的开源数据库技术,企业级数据处理技术整体解决方案提供商;私有云数据库云服务市场整体解决方案提供商。
向TA提问
展开全部

加锁情况与死锁原因分析

为方便大家复现,完整表结构和数据如下:

CREATE TABLE `t3` (
`c1` int(11) NOT NULL AUTO_INCREMENT,
`c2` int(11) DEFAULT NULL,
PRIMARY KEY (`c1`),
UNIQUE KEY `c2` (`c2`)
) ENGINE=InnoDB

insert into t3 values(1,1),(15,15),(20,20);


在 session1 执行 commit 的瞬间,我们会看到 session2、session3 的其中一个报死锁。这个死锁是这样产生的:

  • 1. session1 执行 delete  会在唯一索引 c2 的 c2 = 15 这一记录上加 X lock(也就是在MySQL 内部观测到的:X Lock but not gap);

  • 2. session2 和 session3 在执行 insert 的时候,由于唯一约束检测发生唯一冲突,会加 S Next-Key Lock,即对 (1,15] 这个区间加锁包括间隙,并且被 seesion1 的 X Lock 阻塞,进入等待;

  • 3. session1 在执行 commit 后,会释放 X Lock,session2 和 session3 都获得 S Next-Key Lock;

  • 4. session2 和 session3 继续执行插入操作,这个时候 INSERT INTENTION LOCK(插入意向锁)出现了,并且由于插入意向锁会被 gap 锁阻塞,所以 session2 和 session3 互相等待,造成死锁。

  • 死锁日志如下: 

    INSERT INTENTION LOCK

    在之前的死锁分析第四点,如果不分析插入意向锁,也是会造成死锁的,因为插入最终还是要对记录加 X Lock 的,session2 和 session3 还是会互相阻塞互相等待。

    但是插入意向锁是客观存在的,我们可以在官方手册中查到,不可忽略:

  • Prior to inserting the row, a type of gap lock called an insert intention gap lock is set. This lock signals the intent to insert in such a way that multiple transactions inserting into the same index gap need not wait for each other if they are not inserting at the same position within the gap.

  • 插入意向锁其实是一种特殊的 gap lock,但是它不会阻塞其他锁。假设存在值为 4 和 7 的索引记录,尝试插入值 5 和 6 的两个事务在获取插入行上的排它锁之前使用插入意向锁锁定间隙,即在(4,7)上加 gap lock,但是这两个事务不会互相冲突等待。

    当插入一条记录时,会去检查当前插入位置的下一条记录上是否存在锁对象,如果下一条记录上存在锁对象,就需要判断该锁对象是否锁住了 gap。如果 gap 被锁住了,则插入意向锁与之冲突,进入等待状态(插入意向锁之间并不互斥)。总结一下这把锁的属性:

  • 1. 它不会阻塞其他任何锁;

  • 2. 它本身仅会被 gap lock 阻塞。

  • 在学习 MySQL 过程中,一般只有在它被阻塞的时候才能观察到,所以这也是它常常被忽略的原因吧...

    GAP LOCK

    在此例中,另外一个重要的点就是 gap lock,通常情况下我们说到 gap lock 都只会联想到 REPEATABLE-READ 隔离级别利用其解决幻读。但实际上在 READ-COMMITTED 隔离级别,也会存在 gap lock ,只发生在:唯一约束检查到有唯一冲突的时候,会加 S Next-key Lock,即对记录以及与和上一条记录之间的间隙加共享锁。

    通过下面这个例子就能验证:

    这里 session1 插入数据遇到唯一冲突,虽然报错,但是对 (15,20] 加的 S Next-Key Lock 并不会马上释放,所以 session2 被阻塞。另外一种情况就是本文开始的例子,当 session2 插入遇到唯一冲突但是因为被 X Lock 阻塞,并不会立刻报错 “Duplicate key”,但是依然要等待获取 S Next-Key Lock 。

    有个困惑很久的疑问:出现唯一冲突需要加 S Next-Key Lock 是事实,但是加锁的意义是什么?还是说是通过 S Next-Key Lock 来实现的唯一约束检查,但是这样意味着在插入没有遇到唯一冲突的时候,这个锁会立刻释放,这不符合二阶段锁原则。这点希望能与大家一起讨论得到好的解释。

    如果是在 REPEATABLE-READ,除以上所说的唯一约束冲突外,gap lock 的存在是这样的:

    普通索引(非唯一索引)的S/X Lock,都带 gap 属性,会锁住记录以及前1条记录到后1条记录的左闭右开区间,比如有[4,6,8]记录,delete 6,则会锁住[4,8)整个区间。

    对于 gap lock,相信 DBA 们的心情是一样一样的,所以我的建议是:

  • 1. 在绝大部分的业务场景下,都可以把 MySQL 的隔离界别设置为 READ-COMMITTED;

  • 2. 在业务方便控制字段值唯一的情况下,尽量减少表中唯一索引的数量。

  • 锁冲突矩阵

    前面我们说的 GAP LOCK 其实是锁的属性,另外我们知道 InnoDB 常规锁模式有:S 和 X,即共享锁和排他锁。锁模式和锁属性是可以随意组合的,组合之后的冲突矩阵如下,这对我们分析死锁很有帮助。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式