求y〃-y′=x²的通解
1个回答
展开全部
求微分方程 y''-y′=x²的通解
解:齐次方程y''-y'=0的特征方程 r²-r=r(r-1)=0的根:r₁=0;r₂=1;
因此齐次方程的通解为:y=C₁+C₂e^x.
设原方程的特解y*=ax³+bx²+cx
则y*'=3ax²+2bx+c;y*''=6ax+2b;代入原式得:
6ax+2b-(3ax²+2bx+c)=-3ax²+(6a-2b)x+2b-c=x²
故-3a=1,即a=-1/3;6a-2b=-2-2b=0,故b=-1;2b-c=-2-c=0,故c=-2;
于是得特解:y*=-(1/3)x³-x²-2x;
∴原方程的通解为:y=C₁+C₂e^x-(1/3)x³-x²-2x;
解:齐次方程y''-y'=0的特征方程 r²-r=r(r-1)=0的根:r₁=0;r₂=1;
因此齐次方程的通解为:y=C₁+C₂e^x.
设原方程的特解y*=ax³+bx²+cx
则y*'=3ax²+2bx+c;y*''=6ax+2b;代入原式得:
6ax+2b-(3ax²+2bx+c)=-3ax²+(6a-2b)x+2b-c=x²
故-3a=1,即a=-1/3;6a-2b=-2-2b=0,故b=-1;2b-c=-2-c=0,故c=-2;
于是得特解:y*=-(1/3)x³-x²-2x;
∴原方程的通解为:y=C₁+C₂e^x-(1/3)x³-x²-2x;
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询