什么叫f(x)在区间【a,b】上有界,且只有有限个间断点
设函数f(x)在[a,b]上有界且只有有限个间断点,则f(x)在[a,b]上可积。
对于有限个间断点来说,其面积之和=间断点数量×单个间断点对应的面积。
因为间断点数量是有限个,即为有界量;单个间断点对应的面积是无穷小量。
所以两者的乘积仍然是无穷小量,即有限个间断点面积之和仍然为0。
扩展资料
间断点的类型:
可去间断点:函数在该点左极限、右极限存在且相等,但不等于该点函数值或函数在该点无定义。如函数y=(x^2-1)/(x-1)在点x=1处。
跳跃间断点:函数在该点左极限、右极限存在,但不相等。如函数y=|x|/x在点x=0处。
无穷间断点:函数在该点可以无定义,且左极限、右极限至少有一个不存在,且函数在该点极限为∞。如函数y=tanx在点x=π/2处。
振荡间断点:函数在该点可以无定义,当自变量趋于该点时,函数值在两个常数间变动无限多次。如函数y=sin(1/x)在x=0处。
指的是存在一个正数M, 对所有x, a<=x<=b,都有 |f(x)| < M。第一类间断点指的是左右极限都存在的间断点。
这个论断的含义是,如果函数在闭区间[a,b]上既不会有无穷大的极限点,又不会有激烈的振荡,那么通过不断细分区间、用小矩形面积之和逼近函数图形下的面积,是可行的。
扩展资料:
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数。
这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数,记作y'、f'(x)、dy/dx或df(x)/dx,简称导数。导数是微积分的一个重要的支柱。牛顿及莱布尼茨对此做出了贡献。