f(x)=(根号3sinx+cosx)(根号3cosx-sinx)在区间[0,π/2]上的值域是?
2个回答
展开全部
f(x)=(√3sinx+cosx)(√3cosx-sinx)
=3sinxcosx-√3sin²x+√3cos²x-sinxcosx
=2sinxcosx+√3(cos²x-sin²x)
=sin2x+√3cos2x
=2[½sin2x+(√3/2)cos2x]
=2sin(2x+π/3)
x∈[0,π/2],则π/3≤2x+π/3≤4π/3,-√3/2≤sin(2x+π/3)≤1
-√3≤2sin(2x+π/3)≤2
f(x)的值域为[-√3,2]
=3sinxcosx-√3sin²x+√3cos²x-sinxcosx
=2sinxcosx+√3(cos²x-sin²x)
=sin2x+√3cos2x
=2[½sin2x+(√3/2)cos2x]
=2sin(2x+π/3)
x∈[0,π/2],则π/3≤2x+π/3≤4π/3,-√3/2≤sin(2x+π/3)≤1
-√3≤2sin(2x+π/3)≤2
f(x)的值域为[-√3,2]
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询