函数的拐点的解释是什么?
1个回答
展开全部
函数的拐点的解释是在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越曲线的点(即曲线的凹凸分界点)。
若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号(由正变负或由负变正)或不存在。
可以按下列步骤来判断区间I上的连续曲线y=f(x)的拐点:
⑴求f''(x);
⑵令f''(x)=0,解出此方程在区间I内的实根,并求出在区间I内f''(x)不存在的点;
⑶对于⑵中求出的每一个实根或二阶导数不存在的点x0,检查f''(x)在x0左右两侧邻近的符号,那么当两侧的符号相反时,点(x0,f(x0))是拐点,当两侧的符号相同时,点(x0,f(x0))不是拐点。
连续曲线:
闭线段a≤t≤b(a≠b)到复平面的连续映射称为连续曲线。若x(t)和y(t)是两个在区间a≤t≤b上连续的函数,则z=z(t)=x(t)+iy(t),(a≤t≤b)在平面上确定一条连续曲线γ。
若对任意的t1∈(a,b)及t2∈[a,b],只要t1≠t2就有z(t1)≠z(t2),则称连续曲线γ为简单曲线或若尔当弧,z(a)称为这条简单曲线的起点,z(b)称为这条简单曲线的终点,若简单曲线γ还满足z(a)=z(b),则称γ为简单闭曲线,简单闭曲线也称为若尔当曲线
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询