正方形ABCD,点E,F分别在BC,DC上,且角EAF=45度,证:BE+DF=EF

过程... 过程 展开
晴天Love猫
2007-01-20 · TA获得超过8939个赞
知道小有建树答主
回答量:947
采纳率:66%
帮助的人:911万
展开全部
求证的结论应是EF=BF+DE.证明如下:
证明:
延长FB到G,使BG=DE,连接AG,
在△ADE和△ABG中
AD=AB
∠ADE-∠ABG=90°
DE=BG
∴△ADE≌△ABG (SAS)
∴ AE=AG (全等三角形的对应边相等)
∠EAD=∠GAB (全等三角形的对应角相等)
∵∠DAB=90°∠EAF=45°
∴∠EAD+∠FAB=90°-45°=45°
∴∠GAB+∠FAB=45°
即∠EAF=∠GAF
在△EAF和△GAF中
AE=AG(已证)
∠EAF=∠GAF(已证)
AF=AF(公共边)
∴△EAF≌△GAF (SAS)
∴ EF=GF (全等三角形的对应边相等)
又∵GF=BF+BG BG=ED
∴EF=BF+DE
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式