∫sinx/ x dx为什么积不出来?
展开全部
理论上,任何一个初等函数,尤其是连续函数都存在原函数,但是许多初等函数的原函数虽然存在,但是却无法用初等函数表示出来。
像 sinx/x , exp(x²) ,1/lnx 等等,它们的原函数都存在,但是无法用初等函数表示出来,形象地说,用常规方法,它们都是 “积不出来” 的函数。
如果非要求 ∫ sinx/x dx 的话,只能利用泰勒公式把sinx展开,在x=0处展开较方便,也即用麦克劳林公式展开sinx, 然后每一项都除以x ,这样,被积函数sinx/x 就表示成了无穷级数形式,然后每一项积分,相加,应该是可以找到通项的,最后的结果无法化简,只能写成无穷级数形式
像 sinx/x , exp(x²) ,1/lnx 等等,它们的原函数都存在,但是无法用初等函数表示出来,形象地说,用常规方法,它们都是 “积不出来” 的函数。
如果非要求 ∫ sinx/x dx 的话,只能利用泰勒公式把sinx展开,在x=0处展开较方便,也即用麦克劳林公式展开sinx, 然后每一项都除以x ,这样,被积函数sinx/x 就表示成了无穷级数形式,然后每一项积分,相加,应该是可以找到通项的,最后的结果无法化简,只能写成无穷级数形式
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询