椭圆中心在原点上,焦点在x轴,A,B是顶点,P为圆上一点,PF1垂直于x,PF2平行于AB,求离心率

百度网友f42e459
2010-10-07 · TA获得超过191个赞
知道答主
回答量:23
采纳率:0%
帮助的人:0
展开全部
解:根据题意:设椭圆的方程为[x²/a²]+[y²/b²]=1,假设F1为左焦点,F2为右焦点,那么可得F1(-c,0),F2(c,0),A(a,0),B(0,b)。
因为p是椭圆上一点且PF2平行于AB,
所以,PF2直线方程为y=[(0-b)/(a-0)]*(x-c),
又p是椭圆上一点且PF1垂直于x轴
所以,当x=-c时,y=(-b/a)*(-2c)=2bc/a,P(-c,2bc/a)
[(-c)²/a²]+[(2bc/a)²/b²]=1,
(c²/a²)+[(2c/a)²=1,
(c²)+4c²=a²,
5c²=a²,
e=(根号5)/5。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式