求指函数
2019-04-26 · 移动学习,职达未来!
环球网校
环球网校成立于2003年,十多年来坚持“以学员为中心、以质量为本、以创新驱动”的经营理念,现已发展成为集考试研究、网络课程、直播课堂、题库、答疑、模考、图书、学员社区等为一体的规模化学习平台
向TA提问
关注
展开全部
展开全部
最简单的幂指函数就是y=x^x。说简单,其实并不简单,因为当你真正深入研究这种函数时,就会发现,在x<0时,函数图象存在“黑洞”——无数个间断点,如右图所示(用虚线表示)。
在x>0时,函数曲线是连续的,并且在x=1/e处取得极小值(≈0.6922),在区间(0,1/e]上单调递减,而在区间[1/e,+∞)上单调递增,并过(1,1)点。
在x<0时,函数曲线是间断的,且有无数个间断点,同时,函数曲线以x轴准(近似)对称,函数图象夹于二平行直线y≈-1.4447和y≈1.4447之间,并在x→-∞时,双尾收敛于y=0。
此外,从函数y=x^x的图象可以清楚看出,0^0是不存在的。这就是为什么在初等代数中明文规定“任意非零实数的零次幂都等于1,零的任意非零次幂都等于零”的真正原因。
这就足以说明,幂指函数是初等函数.
f(x)定义域为R,是偶函数,值域为[√2,2],周期性为π,
其减区间为[kπ,kπ+π/2],其增区间为[kπ+π/2,kπ+π],
且ḟ`(kπ+π/2)=0 ,k∈Z 。
最简单的幂指函数将形如y=[f(x)]^g(x)的函数称为幂指函数。也就是说,它既像幂函数,又像指数函数,二者的特点兼而有之。作为幂函数,其幂指数确定不变,而幂底数为自变量;相反地,指数函数却是底数确定不变,而指数为自变量。幂指函数就是幂底数和幂指数同时都为自变量的函数。
最简单的幂指函数就是y=x^x。说简单,其实并不简单,因为当你真正深入研究这种函数时,就会发现,在x<0时,函数图象存在“黑洞”——无数个间断点,如右图所示(用虚线表示)。其实这种现象与幂函数有着内在的联系,也就是说,幂函数也存在x<0时非整指数幂x^(n/2m)的漏洞,这一问题有待专家学者们认真研究后,统一思想,妥善解决。
在x>0时,函数曲线是连续的,并且在x=1/e处取得极小值e^-(1/e)≈0.6922,在区间(0,1/e]上单调递减,而在区间[1/e,+∞)上单调递增,并过(1,1)点。
在x<0时,函数曲线是间断的,且有无数个间断点,同时,函数曲线以x轴准(近似)对称,函数图象夹于二平行直线y=-e^(1/e)≈-1.4447和y=e^(1/e)≈1.4447之间,并在x→-∞时,双尾收敛于y=0。
此外,从函数y=x^x的图象可以清楚看出,0^0是不存在的。这就是为什么在初等代数中明文规定“任意非零实数的零次幂都等于1,零的任意非零非负次幂都等于零”的真正原因
http://baike.baidu.com/view/1833318.htm?fr=ala0_1
在x>0时,函数曲线是连续的,并且在x=1/e处取得极小值(≈0.6922),在区间(0,1/e]上单调递减,而在区间[1/e,+∞)上单调递增,并过(1,1)点。
在x<0时,函数曲线是间断的,且有无数个间断点,同时,函数曲线以x轴准(近似)对称,函数图象夹于二平行直线y≈-1.4447和y≈1.4447之间,并在x→-∞时,双尾收敛于y=0。
此外,从函数y=x^x的图象可以清楚看出,0^0是不存在的。这就是为什么在初等代数中明文规定“任意非零实数的零次幂都等于1,零的任意非零次幂都等于零”的真正原因。
这就足以说明,幂指函数是初等函数.
f(x)定义域为R,是偶函数,值域为[√2,2],周期性为π,
其减区间为[kπ,kπ+π/2],其增区间为[kπ+π/2,kπ+π],
且ḟ`(kπ+π/2)=0 ,k∈Z 。
最简单的幂指函数将形如y=[f(x)]^g(x)的函数称为幂指函数。也就是说,它既像幂函数,又像指数函数,二者的特点兼而有之。作为幂函数,其幂指数确定不变,而幂底数为自变量;相反地,指数函数却是底数确定不变,而指数为自变量。幂指函数就是幂底数和幂指数同时都为自变量的函数。
最简单的幂指函数就是y=x^x。说简单,其实并不简单,因为当你真正深入研究这种函数时,就会发现,在x<0时,函数图象存在“黑洞”——无数个间断点,如右图所示(用虚线表示)。其实这种现象与幂函数有着内在的联系,也就是说,幂函数也存在x<0时非整指数幂x^(n/2m)的漏洞,这一问题有待专家学者们认真研究后,统一思想,妥善解决。
在x>0时,函数曲线是连续的,并且在x=1/e处取得极小值e^-(1/e)≈0.6922,在区间(0,1/e]上单调递减,而在区间[1/e,+∞)上单调递增,并过(1,1)点。
在x<0时,函数曲线是间断的,且有无数个间断点,同时,函数曲线以x轴准(近似)对称,函数图象夹于二平行直线y=-e^(1/e)≈-1.4447和y=e^(1/e)≈1.4447之间,并在x→-∞时,双尾收敛于y=0。
此外,从函数y=x^x的图象可以清楚看出,0^0是不存在的。这就是为什么在初等代数中明文规定“任意非零实数的零次幂都等于1,零的任意非零非负次幂都等于零”的真正原因
http://baike.baidu.com/view/1833318.htm?fr=ala0_1
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询