在△ABC中,已知sinA=sinB+sinC/cosB+cosC,判断三角形的形状?

在△ABC中,已知sinA=sinB+sinC/cosB+cosC,判断三角形的形状?... 在△ABC中,已知sinA=sinB+sinC/cosB+cosC,判断三角形的形状? 展开
370116
高赞答主

2010-10-04 · 你的赞同是对我最大的认可哦
知道顶级答主
回答量:9.6万
采纳率:76%
帮助的人:6.2亿
展开全部
解:
sinB+sinC=2*sin[(B+C)/2]*cos[(B-C)/2]
cosB+cosC=2*cos[(B+C)/2]*cos[(B-C)/2]
sinA=sin(B+C)=2*sin[(B+C)/2]*cos[(B+C)/2]
所以
2*sin[(B+C)/2]*cos[(B+C)/2]*2*cos[(B+C)/2]*cos[(B-C)/2]=2*sin[(B+C)/2]*cos[(B-C)/2]
化简得{cos[(B+C)/2]}^2=1/2
(B+C)/2=∏/4
即B+C=∏/2
所以三角形ABC为直角三角形
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式