设点A为半径是1的圆O上一定点,在圆周上等可能地任取一点B.(1)求弦AB的长超过圆内接正三角形边长的概

设点A为半径是1的圆O上一定点,在圆周上等可能地任取一点B.(1)求弦AB的长超过圆内接正三角形边长的概率;(2)求弦AB的长超过圆半径的概率.... 设点A为半径是1的圆O上一定点,在圆周上等可能地任取一点B.(1)求弦AB的长超过圆内接正三角形边长的概率;(2)求弦AB的长超过圆半径的概率. 展开
 我来答
清远敛在脸6016
2014-12-20 · 超过45用户采纳过TA的回答
知道答主
回答量:162
采纳率:100%
帮助的人:48.3万
展开全部
(1)设“弦AB的长超过圆内接正三角形边长”为事件M,
以点A为一顶点,在圆中作一圆内接正三角形ACD,如右图所示,
则要满足题意点B只能落在劣弧CD上,又圆内接正三角形ACD恰好将圆周3等分,
故P(M)=
劣弧CD的长
圆周长
=
1
3

(2)在圆上其他位置任取一点B,圆半径为1,
则B点位置所有情况对应的弧长为圆的周长2π,
其中满足条件AB的长度大于等于半径长度的对应的弧长为
2
3
?2π?1,
则AB弦的长度大于等于半径长度的概率P=
2
3
?2π?1
2π?1
=
2
3

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式