求高手解答,求详细过程
展开全部
∫(1->9) dx/(x+ √x)
let
u=√x
du = dx/(2√x)
dx=2u.du
x=1, u=1
x=9, u=3
∫(1->9) dx/(x+ √x)
= ∫(1->3) 2u.du/(u^2+ u)
= ∫(1->3) (2u+1)/(u^2+ u) du - ∫(1->3) du/(u^2+ u)
=[ln|u^2+u|]|(1->3) -∫(1->3) [ 1/u - 1/(u+1) ]du
=ln6 - [ln|u/(u+1)|]|(1->3)
=ln6 - ( ln(3/4) - ln(1/2) )
=ln6 -(ln3 -2ln2 +ln2)
=ln6 - ln3 +ln2
=2ln2
let
u=√x
du = dx/(2√x)
dx=2u.du
x=1, u=1
x=9, u=3
∫(1->9) dx/(x+ √x)
= ∫(1->3) 2u.du/(u^2+ u)
= ∫(1->3) (2u+1)/(u^2+ u) du - ∫(1->3) du/(u^2+ u)
=[ln|u^2+u|]|(1->3) -∫(1->3) [ 1/u - 1/(u+1) ]du
=ln6 - [ln|u/(u+1)|]|(1->3)
=ln6 - ( ln(3/4) - ln(1/2) )
=ln6 -(ln3 -2ln2 +ln2)
=ln6 - ln3 +ln2
=2ln2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询