求函数的单调区间 10
4个回答
展开全部
这个要采用导数来求解。
求导,f'(x)=1+1/x-a/x²=(x²+x-a)/x²
令f'(x)=0,即x²+x-a=0 (1)
△=1+4a
1.若△≥0,即a≥1/4时,方程(1)有解,x=-1/2+1/2*√(1+4a)
此时,f(x)的递减区间为(0,-1/2+1/2*√(1+4a)],递增区间为(-1/2+1/2*√(1+4a),+∞)
2.若△<0,即a≥1/4时,方程(1)无解,f'(x)>0
此时,f(x)在(0,+∞)递增
求导,f'(x)=1+1/x-a/x²=(x²+x-a)/x²
令f'(x)=0,即x²+x-a=0 (1)
△=1+4a
1.若△≥0,即a≥1/4时,方程(1)有解,x=-1/2+1/2*√(1+4a)
此时,f(x)的递减区间为(0,-1/2+1/2*√(1+4a)],递增区间为(-1/2+1/2*√(1+4a),+∞)
2.若△<0,即a≥1/4时,方程(1)无解,f'(x)>0
此时,f(x)在(0,+∞)递增
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
求导=0,找出零点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2018-03-20
展开全部
已经毕业好多年
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询