4个回答
展开全部
∫(0->e^2) (1/e)√x dx - ∫(1->e^2) ln√x dx
=(1/e)∫(0->e^2) √x dx -(1/2) ∫(1->e^2) lnx dx
=(1/e)(2/3) [x^(3/2)]|(0->e^2) -(1/2)[xlnx]|(1->e^2) +(1/2) ∫(1->e^2) dx
=(2/3)e^2 - e^2 + (1/2)[x]|(1->e^2)
=-(1/3)e^2 + (1/2)[e^2 -1]
=(1/6)e^2 -1/2
=(1/e)∫(0->e^2) √x dx -(1/2) ∫(1->e^2) lnx dx
=(1/e)(2/3) [x^(3/2)]|(0->e^2) -(1/2)[xlnx]|(1->e^2) +(1/2) ∫(1->e^2) dx
=(2/3)e^2 - e^2 + (1/2)[x]|(1->e^2)
=-(1/3)e^2 + (1/2)[e^2 -1]
=(1/6)e^2 -1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询