拉格朗日定理公式是什么?

 我来答
生活小达人164I
高能答主

2022-01-27 · 世界很大,慢慢探索
知道小有建树答主
回答量:1438
采纳率:97%
帮助的人:33万
展开全部

拉格朗日定理公式f(ζ)=(M-m)/(b-a)。

约瑟夫·拉格朗日是法国数学家、物理学家。他在数学、力学和天文学三个学科领域中都有历史性的贡献,其中尤以数学方面的成就最为突出。

微积分中的拉格朗日定理即(拉格朗日中值定理):

设函数f(x)满足条件:

(1)在闭区间[a,b]上连续。

(2)在开区间(a,b)可导。

则至少存在一点ε∈(a,b),使得f(b) - f(a)=f'(ε)(b-a)或者f(b)=f(a) + f '(ε)(b - a)。

[证明:把定理里面的c换成x在不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x。做辅助函数G(x)=f(x)-{f(b)-f (a)]/(b-a)}x易证明此函数在该区间满足条件:G(a)=G(b);G(x)在[a,b]连续;G(x)在(a,b)可导。此即罗尔定理条件,由罗尔定理条件即证]。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式