请讲解一下解分式方程中所运用的的“分离常数法”,再举几个例子,
1个回答
展开全部
在含有两个量(一个常量和一个变量)的关系式(不等式或方程)中,要求常量的取值范围,可以将变量和常量分离(即变量和常量各在式子的一端),从而求出常量的取值范围.这种方法可称为分离数法.用这种方法可使解答问题简单化.
例如:Y=(ax+b)/(cx+d),(a≠0,c≠0,d≠0),其中a,b,c,d都是常数.
例:y=x/(2x+1).求函数值域
分离常数法,就是把分子中含X的项分离掉,即分子不X项.
Y=X/(2X+1)=[1/2*(2X+1)-1/2]/(2X+1)
=1/2-1/[2(2X+1)].
即有,-1/[2(2X+1)]≠0,
Y≠1/2.
则,函数值域是:{Y|Y≠1/2}.
例如:Y=(ax+b)/(cx+d),(a≠0,c≠0,d≠0),其中a,b,c,d都是常数.
例:y=x/(2x+1).求函数值域
分离常数法,就是把分子中含X的项分离掉,即分子不X项.
Y=X/(2X+1)=[1/2*(2X+1)-1/2]/(2X+1)
=1/2-1/[2(2X+1)].
即有,-1/[2(2X+1)]≠0,
Y≠1/2.
则,函数值域是:{Y|Y≠1/2}.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询