已知函数f(x)=x2+ax+b(a,b∈R),不等式|f(x)|≤|2x2+4x-30|对任意实数x恒成立,则f(x)的最小值

已知函数f(x)=x2+ax+b(a,b∈R),不等式|f(x)|≤|2x2+4x-30|对任意实数x恒成立,则f(x)的最小值是______.... 已知函数f(x)=x2+ax+b(a,b∈R),不等式|f(x)|≤|2x2+4x-30|对任意实数x恒成立,则f(x)的最小值是______. 展开
 我来答
全球绬5
2014-10-15 · 超过51用户采纳过TA的回答
知道答主
回答量:109
采纳率:0%
帮助的人:126万
展开全部
令2x2+4x-30=0,得x=-5或x=3.
∵不等式|f(x)|≤|2x2+4x-30|对任意实数x恒成立,
∴|f(-5)|≤0,|f(3)|≤0,
又|f(-5)|≥0,|f(3)|≥0,
∴f(-5)=f(3)=0,
即25-5a+b=0,9+3a+b=0,
解得:a=2,b=-15.
∴f(x)=x2+2x-15,
又f(x)=(x+1)2-16,
∴f(x)的最小值是-16.
故答案为:-16.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式