微分方程的分类
微分方程的分类:
1、常微分方程和偏微分方程。
含有未知函数的导数,如
的方程是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程。
2、按照不同的分类标准,微分方程可以分为线性或非线性,齐次或非齐次。
一般地,微分方程的不含有任意常数的解称为微分方程的特解,含有相互独立的任意常数,且任意常数的个数与微分方程阶数相等的解称为微分方程的通解(一般解)。
扩展资料
1、一阶线性常微分方程
对于一阶线性常微分方程,常用的方法是常数变易法:
对于方程:y'+p(x)y+q(x)=0,可知其通解:
然后将这个通解代回到原式中,即可求出C(x)的值。
2、二阶常系数齐次常微分方程
对于二阶常系数齐次常微分方程,常用方法是求出其特征方程的解
对于方程:
可知其通解:
其特征方程:
根据其特征方程,判断根的分布情况,然后得到方程的通解。
参考资料来源:百度百科-微分方程
微分方程的分类:常微分方程和偏微分方程。
1、常微分方程(ODE)是指微分方程的自变量只有一个的方程。最简单的常微分方程,未知数是一个实数或是复数的函数,但未知数也可能是一个向量函数或是矩阵函数,后者可对应一个由常微分方程组成的系统。
2、偏微分方程(PDE)是指微分方程的自变量有两个或以上,且方程式中有未知数对自变量的偏微分。偏微分方程的阶数定义类似常微分方程,但更细分为椭圆型、双曲线型及抛物线型的偏微分方程,尤其在二阶偏微分方程中上述的分类更是重要。
有些偏微分方程在整个自变量的值域中无法归类在上述任何一种型式中,这种偏微分方程则称为混合型。
常微分方程及偏微分方程都可以分为线性微分方程及非线性微分方程二类。
扩展资料:
微分方程的约束条件:
常微分方程常见的约束条件是函数在特定点的值,若是高阶的微分方程,会加上其各阶导数的值,有这类约束条件的常微分方程称为初值问题。
若是二阶的常微分方程,也可能会指定函数在二个特定点的值,此时的问题即为边界值问题。若边界条件指定二点数值,称为狄利克雷边界条件(第一类边值条件),此外也有指定二个特定点上导数的边界条件,称为诺伊曼边界条件(第二类边值条件)等。
偏微分方程常见的问题以边界值问题为主,不过边界条件则是指定一特定超曲面的值或导数需符定特定条件。
参考资料来源:百度百科-微分方程
微分方程可分为以下几类,而随着微分方程种类的不同,其相关研究的方式也会随之不同。
常微分方程及偏微分方程
-常微分方程(ODE)是指一微分方程的未知数是单一自变量的函数 。最简单的常微分方程,未知数是一个实数或是复数的函数,但未知数也可能是一个向量函数或是矩阵函数,后者可对应一个由常微分方程组成的系统。微分方程的表达通式是:
f\left(x, \frac{d^n y}{dx^n},\frac{d^{(n-1)} y}{dx^{(n-1)}},\cdots, \frac{dy}{dx}, y\right)=0
常微分方程常依其阶数分类,阶数是指自变量导数的最高阶数 :p.3,最常见的二种为一阶微分方程及二阶微分方程。例如以下的贝塞尔方程:
x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + (x^2 - \alpha^2)y = 0
(其中y为应变量)为二阶微分方程,其解为贝塞尔函数。
-偏微分方程(PDE)是指一微分方程的未知数是多个自变量的函数 ,且方程式中有未知数对自变量的偏微分。偏微分方程的阶数定义类似常微分方程,但更细分为椭圆型、双曲线型及抛物线型的偏微分方程,尤其在二阶偏微分方程中上述的分类更是重要。有些偏微分方程在整个自变量的值域中无法归类在上述任何一种型式中,这种偏微分方程则称为混合型。像以下的方程就是偏微分方程:
\frac{\partial u}{\partial t} + t\frac{\partial u}{\partial x} = 0.
线性及非线性
常微分方程及偏微分方程都可以分为线性及非线性二类。
若微分方程中没有出现未知数及微分项的平方或其他乘积项,也没有出现未知数及其微分项的乘积,此微分方程为线性微分方程,否则即为非线性微分方程。
齐次线性微分方程是线性微分方程中更细的分类,微分方程的解乘上一系数或是与另一个解相加后的结果仍为微分方程的解。
若线性微分方程的系数均为常数,则为常系数线性微分方程。常系数线性微分方程可以利用拉氏转换转换为代数方程:p.315-316,因此简化求解的过程。
针对非线性的微分方程,只有相当少数的方法可以求得微分方程的解析解,而且这些方法需要微分方程有特别的对称性。长时间时非线性微分方程可能会出现非常复杂的特性,也可能会有混沌现象。有关非线性微分方程的一些基本问题,例如解的存在性、唯一性及初始值非线性微分方程的适定性问题,以及边界值非线性微分方程都是相当难的问题,甚至针对特定非线性微分方程的上述基本问题都被视为是数学理论的一大突破。例如2000年提出的7个千禧年大奖难题中,其中一个是纳维-斯托克斯存在性与光滑性,都是探讨纳维-斯托克斯方程式其解的数学性质,至2012年8月为止此问题尚未被证明。
线性微分方程常常用来近似非线性微分方程,不过只在特定的条件下才能近似。例如单摆的运动方程为非线性的微分方程,但在小角度时可以近似为线性的微分方程。
举例
以下是常微分方程的一些例子,其中u为未知的函数,自变量为x,c及ω均为常数。
非齐次一阶常系数线性微分方程:
\frac{du}{dx} = cu+x^2.
齐次二阶线性微分方程:
\frac{d^2u}{dx^2} - x\frac{du}{dx} + u = 0.
描述谐振子的齐次二阶常系数线性微分方程:
\frac{d^2u}{dx^2} + \omega^2u = 0.
非齐次一阶非线性微分方程:
\frac{du}{dx} = u^2 + 1.
描述长度为L的单摆的二阶非线性微分方程:
L\frac{d^2u}{dx^2} + g\sin u = 0.
以下是偏微分方程的一些例子,其中u为未知的函数,自变量为x及t或者是x及y。
齐次一阶线性偏微分方程:
\frac{\partial u}{\partial t} + t\frac{\partial u}{\partial x} = 0.
拉普拉斯方程,是椭圆型的齐次二阶常系数线性偏微分方程:
\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0.
KdV方程,是三阶的非线性偏微分方程:
\frac{\partial u}{\partial t} = 6u\frac{\partial u}{\partial x} - \frac{\partial^3 u}{\partial x^3}.
科普中国·科学百科:微分方程