如图高一数学,求三角函数第二第三题,过程最好可以详细点,谢谢大家?
先化简:
f(x) = 5/2 * (2sinxcosx) -5√3/2 * (2cos²x) + 5√3/2
= 5/2 * sin(2x) - 5√3/2 * [cos(2x) + 1] + 5√3/2
= 5/2 * sin(2x) - 5√3/2 * cos(2x)
= 5 * [1/2 * sin(2x) - √3/2 * cos(2x)]
= 5 * [cos(π/3) * sin(2x) - sin(π/3) * cos(2x)]
= 5 * sin(2x - π/3)
所以:
最小正周期: T = 2π/2 = π
对于正弦函数,单增区间为:
2kπ - π/2 ≤ 2x - π/3 ≤ 2kπ + π/2, k 为整数
解得: kπ - π/12 ≤ x ≤ kπ + 5π/12
单减区间为:
2kπ + π/2 ≤ 2x - π/3 ≤ 2kπ + 3π/2, k 为整数
解得:
kπ + 5π/12 ≤ x ≤ kπ + 11π/12
对于正弦函数 sin(u),当 u = kπ 时是它的对称中心,u = kπ±π/2 就是它的对称轴。k 为整数
即 2x - π/3 = kπ → x = kπ/2 + π/6
当 2x - π/3 = kπ ± π/2
即当 x = kπ/2 -π/12 或 x = kπ/2 + 5π/12 时为它的对称轴。