浮点数转换为十进制数
1个回答
展开全部
(1)(-1)^s表示符号位,当s=0,V为正数;当s=1,V为负数。
(2)M表示有效数字,大于等于1,小于2。
(3)2^E表示指数位。
这时,浮点数就采用上面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
这时,浮点数的指数E等于1-127(或者1-1023),有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);如果有效数字M不全为0,表示这个数不是一个数(NaN)。
JS 中所有的数字类型,实际存储都是通过 8 字节 double 浮点型 表示的。浮点数并不是能够精确表示范围内的所有数的, 虽然 double 浮点型的范围看上去很大: 2.23x10^(-308) ~ 1.79x10^308。 可以表示的最大整数可以很大,但能够精确表示,使用算数运算的并没有这么大。
它其实连这样的简单加法也会算错:
所以在 js 中能够安全使用的有符号 安全 大整数(注意这里是指能够安全使用,进行算数运算的范围),并不像其他语言在 64 位环境中那样是:
而是
JS 的最大和最小安全值可以这样获得:
通过下面的例子,你会明白为什么大于这个值的运算是不安全的:
这些运算都是错误的结果, 因为它们进行的都是浮点数运算会丢失精度。
double 浮点数结构如下:
1 位符号位
11 位指数位
52 位尾数位
使用 52 位表示一个数的整数部分,那么最大可以精确表示的数应该是 2^52 - 1 才对, 就像 64 位表示整数时那样: 2^63 - 1 (去掉 1 位符号位)。 但其实浮点数在保存数字的时候做了规格化处理,以 10 进制为例:
对于二进制来说, 小数点前保留一位, 规格化后始终是 1.***, 节省了 1 bit,这个 1 并不需要保存。
参考文章: http://www.ruanyifeng.com/blog/2010/06/ieee_floating-point_representation.html
(2)M表示有效数字,大于等于1,小于2。
(3)2^E表示指数位。
这时,浮点数就采用上面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
这时,浮点数的指数E等于1-127(或者1-1023),有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示±0,以及接近于0的很小的数字。
这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);如果有效数字M不全为0,表示这个数不是一个数(NaN)。
JS 中所有的数字类型,实际存储都是通过 8 字节 double 浮点型 表示的。浮点数并不是能够精确表示范围内的所有数的, 虽然 double 浮点型的范围看上去很大: 2.23x10^(-308) ~ 1.79x10^308。 可以表示的最大整数可以很大,但能够精确表示,使用算数运算的并没有这么大。
它其实连这样的简单加法也会算错:
所以在 js 中能够安全使用的有符号 安全 大整数(注意这里是指能够安全使用,进行算数运算的范围),并不像其他语言在 64 位环境中那样是:
而是
JS 的最大和最小安全值可以这样获得:
通过下面的例子,你会明白为什么大于这个值的运算是不安全的:
这些运算都是错误的结果, 因为它们进行的都是浮点数运算会丢失精度。
double 浮点数结构如下:
1 位符号位
11 位指数位
52 位尾数位
使用 52 位表示一个数的整数部分,那么最大可以精确表示的数应该是 2^52 - 1 才对, 就像 64 位表示整数时那样: 2^63 - 1 (去掉 1 位符号位)。 但其实浮点数在保存数字的时候做了规格化处理,以 10 进制为例:
对于二进制来说, 小数点前保留一位, 规格化后始终是 1.***, 节省了 1 bit,这个 1 并不需要保存。
参考文章: http://www.ruanyifeng.com/blog/2010/06/ieee_floating-point_representation.html
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询