lim (sin x)^(tanx) x趋于0
1个回答
展开全部
x→0
lim (sinx)^tanx
=lim e^ln (sinx)^tanx
根据复合函数的极限运算
=e^lim ln (sinx)^tanx
现在考虑
lim ln (sinx)^tanx
=lim ln(sinx) * tanx
=lim ln(sinx) / 1/tanx
利用等价无穷小:tanx~x
=lim ln(sinx) / 1/x
该极限为∞/∞型,利用L'Hospital法则,
=lim (ln(sinx))' / (1/x)'
=lim cosx/sinx / -1/x^2
=-lim x^2 / tanx
利用等价无穷小:tanx~x
=-lim x^2/x
=0
故,原极限=e^0=1
有不懂欢迎追问
lim (sinx)^tanx
=lim e^ln (sinx)^tanx
根据复合函数的极限运算
=e^lim ln (sinx)^tanx
现在考虑
lim ln (sinx)^tanx
=lim ln(sinx) * tanx
=lim ln(sinx) / 1/tanx
利用等价无穷小:tanx~x
=lim ln(sinx) / 1/x
该极限为∞/∞型,利用L'Hospital法则,
=lim (ln(sinx))' / (1/x)'
=lim cosx/sinx / -1/x^2
=-lim x^2 / tanx
利用等价无穷小:tanx~x
=-lim x^2/x
=0
故,原极限=e^0=1
有不懂欢迎追问
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询