利用杨辉三角解(a+b)的n次方
展开全部
(a+b)^n
=C(0,n)a^n+C(1,n)a^(n-1)b+....+C(k,n)a^(n-k)b^k+.....+C(n,n)b^n
=1+cn1x+Cn2x2+…+Cnrxa+…+xn
(a+b)^n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项
杨辉三角,是二项式系数在三角形中的一种几何排列,它把二项式系数图形化,把组合数内在的一些代数性质直观地从图形中体现出来,是一种离散型的数与形的结合。
扩展资料
性质:
1、每个数等于它上方两数之和。
2、每行数字左右对称,由1开始逐渐变大。
3、第n行的数字有n项。
4、第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
5、第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
6、每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询