凑微分法怎么理解
展开全部
凑微分法,把被积分式凑成某个函数的微分的积分方法,换元积分两种方法中第一类换元积分法的别称。把dx变换成du的形式,[u=f(x)]把积分式中的x的的函数,变换成u的函数,使积分式符合公式形式。这样就很方便的进行积分再变换成x的形式。
如:∫cos3XdX,公式:∫cosXdX=sinX+C。设:u=3X,du=3dX。∫cos3XdX=∫(cos3X)/3d(3X)=(1/3)∫cosudu=(1/3)sinu+C=(1/3)sin3X+C。
如:∫cos3XdX,公式:∫cosXdX=sinX+C。设:u=3X,du=3dX。∫cos3XdX=∫(cos3X)/3d(3X)=(1/3)∫cosudu=(1/3)sinu+C=(1/3)sin3X+C。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询