关于泊松分布的概率题

设一本书的各页的印刷错误个数X服从泊松分布,已知有一个和两个印刷错误的页数相同,试求随意抽查的4页中无印刷错误的概率。... 设一本书的各页的印刷错误个数X服从泊松分布,已知有一个和两个印刷错误的页数相同,试求随意抽查的4页中无印刷错误的概率。 展开
Wiityman
2010-10-14 · TA获得超过6696个赞
知道大有可为答主
回答量:901
采纳率:0%
帮助的人:533万
展开全部
分布律为:
P{X=k}=[e^(-L)]*L^k/(k!). (L为参数)
(k=0,1,2,3,.....)
现在首先求L.
由:一个和两个印刷错误的页数相同,即:
P{X=1}+=P{X=2},
即:[e^(-L)]*L^1/(1!)=[e^(-L)]*L^2/(2!)
求得:L=L^2/2, (L>0)
故:L=2.
即:P{X=k}=[e^(-2)]*2^k/(k!)
抽取一页没有错误的概率为:P{X=0}=e^(-2).
抽取4页均无错误的概率,按二项分布,有:
p={P{X=0}}^4=[e^(-2)]^4=e^(-8)
即,所求概率为:p=e^(-8)
或 p=1/[e^8].
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式