北师大数学 八年级上p110第2题

文高翰uN
2010-10-16
知道答主
回答量:15
采纳率:0%
帮助的人:0
展开全部

证明:四边形ABCD是菱形

由题意得:AD‖BC,AB‖CD

所以四边形ABCD为平行四边形(两组对边分别平行的四边形为平行四边形)

过B作AD所在直线为垂线,垂足为E

过D作AB所在直线为垂线,垂足为F

因为都垂直,所以角BEA=角DFA=90°

又因为等宽,所以BE=DF

在△ABE与△ADF中

角BEA=角DFA=90°(已证)

角EAB=角FAD(对顶角)

BE=DF(已证)

所以△ABE≌△ADF(AAS)

∴AB=AD(全等三角形,对应边相等)

又∵四边形ABCD为平行四边形

所以平行四边形ABCD为菱形(一组邻边相等的平行四边形为菱形)

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式