3个回答
展开全部
奇函数f(x): f(0)=0.
在区间【0,2】上单调递减: 0<=x1<x2<=2, f(x1)<f(x2).
==> -2<=-x2<-x1<=0, f(-x2)=-f(x2)<-f(x1)=f(-x1).
即f(x)在区间【-2,0】上单调也递减, 从而在【-2,2】上单调递减。
f(m)+f(m-1)>0 ==> f(m)>-f(m-1)=f(1-m)
==> -2<=m<1-m<=2
==> -1<=m<1/2.
在区间【0,2】上单调递减: 0<=x1<x2<=2, f(x1)<f(x2).
==> -2<=-x2<-x1<=0, f(-x2)=-f(x2)<-f(x1)=f(-x1).
即f(x)在区间【-2,0】上单调也递减, 从而在【-2,2】上单调递减。
f(m)+f(m-1)>0 ==> f(m)>-f(m-1)=f(1-m)
==> -2<=m<1-m<=2
==> -1<=m<1/2.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
先根据定义域求出-2<=m<=2且-2<=m-1 <=2及-1<=m<=2
f(m)+f(m-1)>0及f(m)>-f(m-1)
因为f(x)是奇函数所以-f(m-1)=f(1-m)所以f(m)>f(1-m)
又因为是减函数所以m<1-m及m<1/2
综上-1<=m<1/2
f(m)+f(m-1)>0及f(m)>-f(m-1)
因为f(x)是奇函数所以-f(m-1)=f(1-m)所以f(m)>f(1-m)
又因为是减函数所以m<1-m及m<1/2
综上-1<=m<1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询