求解:计算下列极限
3个回答
展开全部
①
∵ x->0 时,1-cosx ~ x^2/2 ; sinx ~ x ,由等价无穷小量替换:
lim(x->0) [1-cosx]/xsinx
= lim(x->0) [x^2/2]/(x*x)
= 1/2
②
由重要极限:t->0时, (1+t)^(1/t) -> e
lim(x->∞) [1+1/3x]^x
=lim(x->∞) [1+(1/3x)]^[(3x)(1/3)]
=lim(x->∞) {[1+(1/3x)]^(3x)}^(1/3)
=e^(1/3)
③
由重要极限:t->0时, (1+t)^(1/t) -> e
lim(x->0) [1+tanx]^2cotx
=lim(x->∞) [1+tanx]^(1/tanx)*2
=lim(x->∞) {[1+tanx]^(1/tanx)}^2
=e^2
④
由重要极限:t->0时, (1+t)^(1/t) -> e
lim(x->0) [1-2x]^x
=lim(x->0) [1+(-2x)]^[1/(-2x)(-2)]
=lim(x->0) {[1+(-2x)]^[1/(-2x)]}^(-2)
=e^(-2)
∵ x->0 时,1-cosx ~ x^2/2 ; sinx ~ x ,由等价无穷小量替换:
lim(x->0) [1-cosx]/xsinx
= lim(x->0) [x^2/2]/(x*x)
= 1/2
②
由重要极限:t->0时, (1+t)^(1/t) -> e
lim(x->∞) [1+1/3x]^x
=lim(x->∞) [1+(1/3x)]^[(3x)(1/3)]
=lim(x->∞) {[1+(1/3x)]^(3x)}^(1/3)
=e^(1/3)
③
由重要极限:t->0时, (1+t)^(1/t) -> e
lim(x->0) [1+tanx]^2cotx
=lim(x->∞) [1+tanx]^(1/tanx)*2
=lim(x->∞) {[1+tanx]^(1/tanx)}^2
=e^2
④
由重要极限:t->0时, (1+t)^(1/t) -> e
lim(x->0) [1-2x]^x
=lim(x->0) [1+(-2x)]^[1/(-2x)(-2)]
=lim(x->0) {[1+(-2x)]^[1/(-2x)]}^(-2)
=e^(-2)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询