初二数学课程导报5期答案
2个回答
展开全部
14、有两个数 他们的和是13,积是-48,求这两个数?
解:设其中一个数为a,另一个数则为13-a
a(13-a)=-48
a²-13a-48=0
(a-16)(a+3)=0
a=-3或a=16
a=-3时,另一个数是16
a=16时,另一个数是-3
15、为了把1个长为100m,宽60m的游泳池扩建成一个周长为600m的大型水上游乐场,把游泳池的长增加xm。那么x等于多少时,水上游泳场的面积为20000平方米。如果能求出x值?如果不能讲明理由。
解:长增加后为100+x米
此时宽为(600/2-100-x)=200-x米
(100+x)(200-x)=20000
20000+200x-100x-x²=20000
x²-100x=0
x(x-100)=0
x=100或x=0(舍去)
长增加100米,宽增加200-100-60=40米
10、一个商店以每件21元的价格进购一批商品,该商品可自行定价,若每件商品为a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店要盈利400元,需要进货多少件?每件定价位多少元?
解:根据题意
(a-21)(350-10a)=400
350a-7350-10a²+210a=400
a²-56a+775=0
(a-25)(a-31)=0
a=25或a=31
因为利润不超过20%,所以a最大为21×(1+20%)=25.2
因此a=31不合题意,舍去
所以a=25
定价为25元,进货350-10×25=100件
11、一个旅行社推出旅游方案如果人数不超过25人,人均费用为1000元,如果人数超过25人,每增加一人人均旅游费用降低20元,但人均费用不得低于700元的收费标准,某单位职工去旅游,共支付27000元,求共有多少人参加旅游?
解:首先判断一下
这个单位人数超过25人
因为要是25人的话,那么用的钱数是25×1000=25000元
所以超过25人
设增加a人,人均费用为1000-20a元
(1000-20a)×(25+a)=27000
25000-500a+1000a-20a²=27000
20a²-500a+2000=0
a²-25a+100=0
(a-5)(a-20)=0
a=5或20
当a=20时,人均费用=1000-20×20=600<700
所以a=20不合题意,舍去
所以有25+5=30人去旅游
仅供参考
解:设其中一个数为a,另一个数则为13-a
a(13-a)=-48
a²-13a-48=0
(a-16)(a+3)=0
a=-3或a=16
a=-3时,另一个数是16
a=16时,另一个数是-3
15、为了把1个长为100m,宽60m的游泳池扩建成一个周长为600m的大型水上游乐场,把游泳池的长增加xm。那么x等于多少时,水上游泳场的面积为20000平方米。如果能求出x值?如果不能讲明理由。
解:长增加后为100+x米
此时宽为(600/2-100-x)=200-x米
(100+x)(200-x)=20000
20000+200x-100x-x²=20000
x²-100x=0
x(x-100)=0
x=100或x=0(舍去)
长增加100米,宽增加200-100-60=40米
10、一个商店以每件21元的价格进购一批商品,该商品可自行定价,若每件商品为a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店要盈利400元,需要进货多少件?每件定价位多少元?
解:根据题意
(a-21)(350-10a)=400
350a-7350-10a²+210a=400
a²-56a+775=0
(a-25)(a-31)=0
a=25或a=31
因为利润不超过20%,所以a最大为21×(1+20%)=25.2
因此a=31不合题意,舍去
所以a=25
定价为25元,进货350-10×25=100件
11、一个旅行社推出旅游方案如果人数不超过25人,人均费用为1000元,如果人数超过25人,每增加一人人均旅游费用降低20元,但人均费用不得低于700元的收费标准,某单位职工去旅游,共支付27000元,求共有多少人参加旅游?
解:首先判断一下
这个单位人数超过25人
因为要是25人的话,那么用的钱数是25×1000=25000元
所以超过25人
设增加a人,人均费用为1000-20a元
(1000-20a)×(25+a)=27000
25000-500a+1000a-20a²=27000
20a²-500a+2000=0
a²-25a+100=0
(a-5)(a-20)=0
a=5或20
当a=20时,人均费用=1000-20×20=600<700
所以a=20不合题意,舍去
所以有25+5=30人去旅游
仅供参考
展开全部
第5期二版参考答案
12.3等腰三角形(1)
1.D. 2.C.
3.105°. 4. 75°.
5.解:设∠C=α,则∠B=∠CAD=α,∠BDA=∠BAD=2α,于是α+2α+2α=180°,解得α=36°.故∠ADB=72°.
6. 80°,50°,50°或50°,65°,65°或130°,25°,25°.
7.(1)∵DA= DC,∴∠A=∠ACD=30°,
∴∠CDB=60°.
∵DB=DC,∴∠B=∠DCB=60°,
∴∠ACB=90°;
(2)∠ACB=90°;
(3)不论∠A等于多少度(小于90°),∠ACB总等于90°.
12.3等腰三角形(2)
1.C. 2.2cm. 3.3.
4.连接CD.∵AD=BC,AC=BD,DC=CD.
∴△ADC≌△BCD.∴∠ACD=∠BDC.
∴OD=OC.
5.6.
6.证明:在DC上截取DE=DB,连接AE.则AB=AE,∴∠B=∠AEB.∵∠B=2∠C,∴∠AEB=2∠C.
∵∠AEB=∠C+∠EAC,∴∠C=∠EAC.
∴AE=EC.∴DC=DE+EC=BD+AB.
12.3等腰三角形(3)
1.150m. 2.B. 3.D. 4. 120°.
5.(1)∵△ABC为等边三角形,
∴∠B=∠ACB=60°,BC=AC.
又∵BE=CD.
∴△BCE≌△CAD(SAS).
∴CE=AD.
(2)由(1)得∠ECB=∠DAC.
∴∠APE=∠DAC+∠ECA=∠ECB+∠ECA=∠ACB=60°.
6.(1)∵△ACD和△BCE都是等边三角形,
∴CA=CD,CE=CB,∠ACD=∠BCE=60°.
于是∠DCE=60°.∠ACE=∠DCB=120°.
∴△ACE≌△DCB(SAS). ∴AE=DB.
(2)由第(1)问的结论得∠CAE=∠CDB.
∵CA=CD,∠ACG=∠DCH=60°.
∴△ACG≌△DCH(ASA).
∴CG=CH.而∠DCE=60°.
∴△CGH是等边三角形.
12.3等腰三角形(4)
1.12. 2.6cm. 3. 30.
4.过点P作PC⊥OB于点C.
∵PE⊥OA,OP平分∠AOB,∴PE=PC.
∵PD‖OA,∴∠OPD=∠POA.
∵∠POB=∠POA,∴∠OPD=∠POB.∴PD=OD.
∴∠PDC=∠AOB=30°.
又∵OD=4cm,∠PCD=90°,
∴PC= PD=2 cm.∴PE=PC=2 cm.
5.(1)当∠BQP=90°时,BQ= BP.
即t= (3-t),t=1(s);
(2)当∠BPQ=90°时,BP= BQ.即3-t= t,t=2(s).
故当t=1 s或t=2 s时,△PBQ是直角三角形.
12.3测试题
基础巩固
1.C.2.B.3.B.4.C.5.B.
6.B.提示:设∠DCA=α,则∠BCA=∠A=2α,在△DAC中,α+2α+120°=180°,解得α=20°.在△ABC中,∠B=180°-4α=100°.
7.480. 8.50°或80°. 9.15cm.
10.80.提示:△ABC≌△ADE.于是∠EAD=∠CAB,∠EAC=∠DAB.△ACE是等腰三角形.
11.解:在△ADE中,
∠DAE=180°-(60°+70°)=50°.
∵CA=CD,∠ADE=60°,
∴∠DAC=60°.∴∠EAC=60°-50°=10°.
∵BA=BE,∠AED=70°,
∴∠BAE=70°.
∴∠BAC=∠BAE+∠EAC=70°+10°=80°.
12.(1)∵BF=CE,∴BC=EF.
∵AB⊥BE,DE⊥BE,∴∠B=∠E.
∵AB=DE,∴△ABC≌△DEF.
(2)由第(1)问可知∠GFC=∠GCF,∴GF=GC.
13.证明:连接FA,
∵AB=AC,∠A=120°,∴∠B=∠C=30°.
∵EF垂直平分AC,∴FA=FC.
于是∠FAC=∠C=30°,∠BAF=90°.
在Rt△BAF中得,∵BF=2FA.∴BF=2CF.
14.证明:∵△ABC和△AQP都是等边三角形,∴∠BAC=∠QAP=60°.∴∠BAQ=∠CAP.
∵AB=AC,AQ=AP,
∴△BAQ≌△CAP(SAS).
∴∠ACP=∠B=60°=∠BAC.∴AB‖PC.
15.过点D作DG‖AE交BC于点G.则∠DGB=∠ACB.
∵AB=AC,∴∠B=∠ACB.
∴∠B=∠DGB.∴DB=DG.
∵BD=CE,∴DG=CE.
∵∠FDG=∠FEC,∠DFG=∠EFC,
∴△FDG≌△FEC.∴DF=EF.
能力提高
1.D.
2.C.提示:两条对角线的交点P0满足条件.以AB为边向正方形内作等边三角形P1AB,则P1也满足条件.同理可作出P2、P3、P4.因此,在正方形内共可找到5个满足条件的点P(注:在正方形外还可以找到4个满足条件的点P) .
3.40°.提示:∠APQ+∠AQP=2(∠B+∠C)=2(180°-110°)=140°.
4.①②③④.提示:连接AC,由SAS知△PCA≌△PCB,于是可知PC平分等腰三角形CAB的顶角,所以PC⊥AB.
5.解:过点A作AG⊥DE于点G,则
AG‖BC,∠FGA=∠FEB,∠AFG=∠BFE.
∵FA=FB.∴△FAG≌△FBE.
∴FG=FE=3,AG=BE=4.
易知△CDE是等腰直角三角形,从而可知△AGD是等腰直角三角形,
∴DG=AG=4.∴DF=DG+FG=4+3=7.
6.答:AB与AF,CF之间的等量关系是:AB=AF+CF.
证明:分别延长AE,DF相交于点M.则△EAB≌△EMC.
∴AB=CM,∠BAE=∠FMA.
∵∠BAE=∠FAM,
∴∠FAM=∠FMA.
∴AF=FM.
∴AB=CM=CF+FM=CF+AF.
12.3等腰三角形(1)
1.D. 2.C.
3.105°. 4. 75°.
5.解:设∠C=α,则∠B=∠CAD=α,∠BDA=∠BAD=2α,于是α+2α+2α=180°,解得α=36°.故∠ADB=72°.
6. 80°,50°,50°或50°,65°,65°或130°,25°,25°.
7.(1)∵DA= DC,∴∠A=∠ACD=30°,
∴∠CDB=60°.
∵DB=DC,∴∠B=∠DCB=60°,
∴∠ACB=90°;
(2)∠ACB=90°;
(3)不论∠A等于多少度(小于90°),∠ACB总等于90°.
12.3等腰三角形(2)
1.C. 2.2cm. 3.3.
4.连接CD.∵AD=BC,AC=BD,DC=CD.
∴△ADC≌△BCD.∴∠ACD=∠BDC.
∴OD=OC.
5.6.
6.证明:在DC上截取DE=DB,连接AE.则AB=AE,∴∠B=∠AEB.∵∠B=2∠C,∴∠AEB=2∠C.
∵∠AEB=∠C+∠EAC,∴∠C=∠EAC.
∴AE=EC.∴DC=DE+EC=BD+AB.
12.3等腰三角形(3)
1.150m. 2.B. 3.D. 4. 120°.
5.(1)∵△ABC为等边三角形,
∴∠B=∠ACB=60°,BC=AC.
又∵BE=CD.
∴△BCE≌△CAD(SAS).
∴CE=AD.
(2)由(1)得∠ECB=∠DAC.
∴∠APE=∠DAC+∠ECA=∠ECB+∠ECA=∠ACB=60°.
6.(1)∵△ACD和△BCE都是等边三角形,
∴CA=CD,CE=CB,∠ACD=∠BCE=60°.
于是∠DCE=60°.∠ACE=∠DCB=120°.
∴△ACE≌△DCB(SAS). ∴AE=DB.
(2)由第(1)问的结论得∠CAE=∠CDB.
∵CA=CD,∠ACG=∠DCH=60°.
∴△ACG≌△DCH(ASA).
∴CG=CH.而∠DCE=60°.
∴△CGH是等边三角形.
12.3等腰三角形(4)
1.12. 2.6cm. 3. 30.
4.过点P作PC⊥OB于点C.
∵PE⊥OA,OP平分∠AOB,∴PE=PC.
∵PD‖OA,∴∠OPD=∠POA.
∵∠POB=∠POA,∴∠OPD=∠POB.∴PD=OD.
∴∠PDC=∠AOB=30°.
又∵OD=4cm,∠PCD=90°,
∴PC= PD=2 cm.∴PE=PC=2 cm.
5.(1)当∠BQP=90°时,BQ= BP.
即t= (3-t),t=1(s);
(2)当∠BPQ=90°时,BP= BQ.即3-t= t,t=2(s).
故当t=1 s或t=2 s时,△PBQ是直角三角形.
12.3测试题
基础巩固
1.C.2.B.3.B.4.C.5.B.
6.B.提示:设∠DCA=α,则∠BCA=∠A=2α,在△DAC中,α+2α+120°=180°,解得α=20°.在△ABC中,∠B=180°-4α=100°.
7.480. 8.50°或80°. 9.15cm.
10.80.提示:△ABC≌△ADE.于是∠EAD=∠CAB,∠EAC=∠DAB.△ACE是等腰三角形.
11.解:在△ADE中,
∠DAE=180°-(60°+70°)=50°.
∵CA=CD,∠ADE=60°,
∴∠DAC=60°.∴∠EAC=60°-50°=10°.
∵BA=BE,∠AED=70°,
∴∠BAE=70°.
∴∠BAC=∠BAE+∠EAC=70°+10°=80°.
12.(1)∵BF=CE,∴BC=EF.
∵AB⊥BE,DE⊥BE,∴∠B=∠E.
∵AB=DE,∴△ABC≌△DEF.
(2)由第(1)问可知∠GFC=∠GCF,∴GF=GC.
13.证明:连接FA,
∵AB=AC,∠A=120°,∴∠B=∠C=30°.
∵EF垂直平分AC,∴FA=FC.
于是∠FAC=∠C=30°,∠BAF=90°.
在Rt△BAF中得,∵BF=2FA.∴BF=2CF.
14.证明:∵△ABC和△AQP都是等边三角形,∴∠BAC=∠QAP=60°.∴∠BAQ=∠CAP.
∵AB=AC,AQ=AP,
∴△BAQ≌△CAP(SAS).
∴∠ACP=∠B=60°=∠BAC.∴AB‖PC.
15.过点D作DG‖AE交BC于点G.则∠DGB=∠ACB.
∵AB=AC,∴∠B=∠ACB.
∴∠B=∠DGB.∴DB=DG.
∵BD=CE,∴DG=CE.
∵∠FDG=∠FEC,∠DFG=∠EFC,
∴△FDG≌△FEC.∴DF=EF.
能力提高
1.D.
2.C.提示:两条对角线的交点P0满足条件.以AB为边向正方形内作等边三角形P1AB,则P1也满足条件.同理可作出P2、P3、P4.因此,在正方形内共可找到5个满足条件的点P(注:在正方形外还可以找到4个满足条件的点P) .
3.40°.提示:∠APQ+∠AQP=2(∠B+∠C)=2(180°-110°)=140°.
4.①②③④.提示:连接AC,由SAS知△PCA≌△PCB,于是可知PC平分等腰三角形CAB的顶角,所以PC⊥AB.
5.解:过点A作AG⊥DE于点G,则
AG‖BC,∠FGA=∠FEB,∠AFG=∠BFE.
∵FA=FB.∴△FAG≌△FBE.
∴FG=FE=3,AG=BE=4.
易知△CDE是等腰直角三角形,从而可知△AGD是等腰直角三角形,
∴DG=AG=4.∴DF=DG+FG=4+3=7.
6.答:AB与AF,CF之间的等量关系是:AB=AF+CF.
证明:分别延长AE,DF相交于点M.则△EAB≌△EMC.
∴AB=CM,∠BAE=∠FMA.
∵∠BAE=∠FAM,
∴∠FAM=∠FMA.
∴AF=FM.
∴AB=CM=CF+FM=CF+AF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询