已知函数y=√(1-x)+√(x+3)的最大值为M,最少值m,则m/M的值为?如题 谢谢了
2个回答
展开全部
定义域1-x>=0,x+3>=0 -3<=x<=1 (1-x)^1/2>=0,(x+3)^1/2>=0 所以y>=0 y^2=1-x+2[(1-x)(x+3)]^1/2+x+3 =4+2(-x^2-2x+3)^1/2 =4+2[-(x+1)^2+4]^1/2 -3<=x<=1 所以x=-1,-(x+1)^2+4最大=4,4+2[-(x+1)^2+4]^1/2最大=8, x=-1或3,-(x+1)^2+4最小=0,4+2[-(x+1)^2+4]^1/2最小=4, 所以4<=y^2<=8 2<=y<=2√2 所以m/M=2/2√2=√2/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询