设不等式x2-2ax+a+2≤0的解集为M,若M?[1,4],求实数a的范围
1个回答
展开全部
M?[1,4]有两种情况:其一是M=?,此时△<0;其二是M≠?,此时△=0或△>0,
分三种情况计算a的取值范围.
设f (x)=x2-2ax+a+2,有△=(-2a)2-4(a+2)=4(a2-a-2).…(2分)
(1)当△<0时,-1<a<2,M=??[1,4].…(3分)
(2)当△=0时,a=-1或2.
当a=-1时,M={-1}?[1,4],故舍去.
当a=2时,M={2}?[1,4].…(6分)
(3)当△>0时,有a<-1或a>2.
设方程f (x)=0的两根为x1,x2,且x1<x2,
那么M=[x1,x2],由M?[1,4]可得 1≤x1<x2≤4,故应有f(1)≥0,f(4)≥0,
且f (x)=0的对称轴x=a∈[1,4],即
,…(8分)
∴
,解得2<a≤
.…(10分)
综上可得,M?[1,4]时,a的取值范围是 (-1,
].…(12分)
分三种情况计算a的取值范围.
设f (x)=x2-2ax+a+2,有△=(-2a)2-4(a+2)=4(a2-a-2).…(2分)
(1)当△<0时,-1<a<2,M=??[1,4].…(3分)
(2)当△=0时,a=-1或2.
当a=-1时,M={-1}?[1,4],故舍去.
当a=2时,M={2}?[1,4].…(6分)
(3)当△>0时,有a<-1或a>2.
设方程f (x)=0的两根为x1,x2,且x1<x2,
那么M=[x1,x2],由M?[1,4]可得 1≤x1<x2≤4,故应有f(1)≥0,f(4)≥0,
且f (x)=0的对称轴x=a∈[1,4],即
|
∴
|
18 |
7 |
综上可得,M?[1,4]时,a的取值范围是 (-1,
18 |
7 |
大雅新科技有限公司
2024-11-19 广告
2024-11-19 广告
这方面更多更全面的信息其实可以找下大雅新。深圳市大雅新科技有限公司从事KVM延长器,DVI延长器,USB延长器,键盘鼠标延长器,双绞线视频传输器,VGA视频双绞线传输器,VGA延长器,VGA视频延长器,DVI KVM 切换器等,优质供应商,...
点击进入详情页
本回答由大雅新科技有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询