这个积分怎么求?
1个回答
展开全部
let
u=π/2 -x
du =-dx
x=0, u=π/2
x=π/2, u=0
I
=∫(0->π/2) dx/[ 1+ (tanx)^2018]
=∫(π/2->0) -du/[ 1+ (cotu)^2018]
=∫(0->π/2) dx/[ 1+ (cotx)^2018]
2I
=∫(0->π/2) dx/[ 1+ (tanx)^2018] + ∫(0->π/2) dx/[ 1+ (cotx)^2018]
=∫(0->π/2) [ 2+(tanx)^2018 + (cotx)^2018 ]/{[1+ (tanx)^2018].[ 1+ (cotx)^2018]} dx
=∫(0->π/2) [ 2+(tanx)^2018 + (cotx)^2018 ]/[2+ (tanx)^2018]+ (cotx)^2018]} dx
=∫(0->π/2) dx
=π/2
I=π/4
=>∫(0->π/2) dx/[ 1+ (tanx)^2018] =π/4
u=π/2 -x
du =-dx
x=0, u=π/2
x=π/2, u=0
I
=∫(0->π/2) dx/[ 1+ (tanx)^2018]
=∫(π/2->0) -du/[ 1+ (cotu)^2018]
=∫(0->π/2) dx/[ 1+ (cotx)^2018]
2I
=∫(0->π/2) dx/[ 1+ (tanx)^2018] + ∫(0->π/2) dx/[ 1+ (cotx)^2018]
=∫(0->π/2) [ 2+(tanx)^2018 + (cotx)^2018 ]/{[1+ (tanx)^2018].[ 1+ (cotx)^2018]} dx
=∫(0->π/2) [ 2+(tanx)^2018 + (cotx)^2018 ]/[2+ (tanx)^2018]+ (cotx)^2018]} dx
=∫(0->π/2) dx
=π/2
I=π/4
=>∫(0->π/2) dx/[ 1+ (tanx)^2018] =π/4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询