金属探测器原理
金属探测器原理是利用电磁感应的原理,利用有交流电通过的线圈,产生迅速变化的磁场。这个磁场能在金属物体内部能感生涡电流。涡电流又会产生磁场,倒过来影响原来的磁场,引发探测器发出鸣声。
流经发射线圈的电流会产生一个电磁场,就如同电动机也会产生电磁场一样。磁场的极性垂直于线圈所在平面。每当电流改变方向,磁场的极性都会随之改变。这意味着,如果线圈平行于地面,那么磁场的方向会不断地交替变化,一会儿垂直于地面向下,一会儿又垂直于地面向上。
随着磁场方向在地下反复变化,它会与所遇的任何导体目标物发生作用,导致目标物自身也会产生微弱的磁场。目标物磁场的极性同发射线圈磁场的极性恰好相反。如果发射线圈产生的磁场方向垂直地面向下,则目标物磁场就垂直于地面向上。
扩展资料
金属探测器根据目标物产生的磁场的强度,能近似地判定目标物埋藏的深度。目标物埋藏得越浅,接收线圈收集到的磁场强度就越大,产生的电流也越大。
目标物埋藏得越深,磁场就越弱。如果超过了一定的深度,目标物磁场在地表处的强度过于微弱,就不能被接收线圈感测到。
VLF技术的金属探测器具有一种识别能力。由于大多数金属具有不同的电导值和电阻值,VLF金属探测器可利用一对称为相位解调器的电子线路测出相移量,并将实测数据同某一种类的金属相移均值进行比较。然后探测器就会以听觉或视觉信号的形式,将目标物可能所处的金属类型范围告知探测者。
更高级的探测器甚至支持设定多个忽略区间。例如,可以对探测器进行设置,让它忽略与易拉罐拉环或小钉子的相移区间相当的物体。识别和忽略功能的缺点是,有可能过滤掉很多与“废物”具有相近相移的有价值的东西。但如果您要寻找某一特定类型的目标物,这类功能就会极为有用。
2024-11-18 广告
2020-02-17 · 为您提供完善的解决方案,贯穿整个价值链。
金属探测器实用技术一般有以下两种:
1、甚低频(VLF)也称感应平衡,也许是当今最为常用的一种探测技术。流经发射线圈的电流会产生一个电磁场,就如同电动机也会产生电磁场一样。磁场的极性垂直于线圈所在平面。每当电流改变方向,磁场的极性都会随之改变。这意味着,如果线圈平行于地面,那么磁场的方向会不断地交替变化,一会儿垂直于地面向下,一会儿又垂直于地面向上。
2、脉冲感应(PI)技术的金属探测器不是很常见。有别于VLF系统,PI系统可以利用单个线圈来承担发射器和接收器的双重任务,也可利用两个甚至三个线圈协同工作。这种技术向线圈发送高能、短时的电流脉冲(冲击)。每一次脉冲都产生一个瞬时磁场。脉冲结束后,磁场极性会反转,然后迅速衰减,产生一个尖锐的电流毛刺。这一毛刺可持续几微秒(一微秒等于百万分之一秒),并导致线圈上产生另一电流。
这一电流称为反射脉冲,持续的时间极为短暂,只有30微秒左右。随后下一个脉冲会到达线圈,并重复上述过程。基于PI技术的金属探测器每秒一般要发送约100个脉冲,但这一数字可因生产商和产品型号的不同而有很大变化,每秒发送的脉冲数小可至数十次,多可达上千次。
梅特勒-托利多公司为保护液态、膏状和浆状食品在包装前免受金属污染,推出了新型L系列管道金属探测器。由于具有先进的检测线圈技术和数字信号处理能力,该金属探测器的设计增加了在恶劣的食品加工条件下的产品中所有金属类型检验的精确度和灵敏度,例如非磁性不锈钢和非球形物体。