计算二重积分∫∫(x+y)dxdy,其中D为x^2+y^2≤2x.如题 谢谢了
计算过程如下:
∫∫(x+y)dxdy=∫∫xdxdy
用极坐标,x²+y²=2x的极坐标方程为:r=2cosθ
=∫[-π/2---->π/2] dθ∫[0---->2cosθ] rcosθ*rdr
=∫[-π/2---->π/2] cosθdθ∫[0---->2cosθ] r²dr
=∫[-π/2---->π/2] (cosθ)*(1/3)r³ |[0---->2cosθ] dθ
=(8/3)∫[-π/2---->π/2] cos⁴θ dθ
=(16/3)∫[0---->π/2] cos⁴θ dθ
=(16/3)∫[0---->π/2] [1/2(1+cos2θ)]² dθ
=(4/3)∫[0---->π/2] (1+cos2θ)² dθ
=(4/3)∫[0---->π/2] (1+2cos2θ+cos²2θ) dθ
=(4/3)∫[0---->π/2] (1+2cos2θ+1/2(1+cos4θ)) dθ
=(4/3)∫[0---->π/2] (3/2+2cos2θ+1/2cos4θ) dθ
=(4/3)(3/2θ+sin2θ+1/8sin4θ) |[0---->π/2]
=(4/3)(3/2)*(π/2)
=π
二重积分的性质:
二重积分是二元函数在空间上的积分,同定积分类似,是某种特定形式的和的极限。本质是求曲顶柱体体积。
重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在高维空间中的(有向)曲面上进行积分,称为曲面积分。
同时二重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
2024-07-18 广告
首先本题区域关于x轴对称,y关于y是一个奇函数,因此积分为0,所以被积函数中的y可去掉。
∫∫(x+y)dxdy
=∫∫xdxdy
用极坐标,x²+y²=2x的极坐标方程为:r=2cosθ
=∫[-π/2---->π/2]
dθ∫[0---->2cosθ]
rcosθ*rdr
=∫[-π/2---->π/2]
cosθdθ∫[0---->2cosθ]
r²dr
=∫[-π/2---->π/2]
(cosθ)*(1/3)r³
|[0---->2cosθ]
dθ
=(8/3)∫[-π/2---->π/2]
cos⁴θ
dθ
=(16/3)∫[0---->π/2]
cos⁴θ
dθ
=(16/3)∫[0---->π/2]
[1/2(1+cos2θ)]²
dθ
=(4/3)∫[0---->π/2]
(1+cos2θ)²
dθ
=(4/3)∫[0---->π/2]
(1+2cos2θ+cos²2θ)
dθ
=(4/3)∫[0---->π/2]
(1+2cos2θ+1/2(1+cos4θ))
dθ
=(4/3)∫[0---->π/2]
(3/2+2cos2θ+1/2cos4θ)
dθ
=(4/3)(3/2θ+sin2θ+1/8sin4θ)
|[0---->π/2]
=(4/3)(3/2)*(π/2)
=π