证明方程X^5-3X=1在区间(1,2)内至少有一个实根~

 我来答
机器1718
2022-06-01 · TA获得超过6825个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:159万
展开全部
证明:
原方程可化为x^5-3x-1=0
令f(x)=x^5-3x-1
要使得方程在区间(1,2)内至少有一个实根,即要求f(x)与x轴至少有一个交点.
f(1)=-30
所以f(x)与x轴在区间(1,2)内必有交点.
所以方程X^5-3X=1在区间(1,2)内至少有一个实根.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式