数列n/n+1怎么求和
展开全部
Sn=1/2^2+2/2^3+3/2^4+4/2^5+……+(n-1)/2^n+n/2^(n+1)2Sn=1/2+2/2^2+3/2^3+4/2^4+……+(n-1)/2^(n-1)+n/2^n两式相减:Sn=1/2+1/2^2+1/2^3+1/2^4+1/2^5+……+1/2^n-n/2^(n+1)=(1/2)[(1/2)^n-1]/(1/2-1)-n/2^(n+1)=1-(1/2)^n-n(1/2)^(n+1)=1-2(1/2)^(n+1)-n(1/2)^(n+1)=1-(2+n)(1/2)^(n+1)limSn=lim[1-(2+n)(1/2)^(n+1)]=1-lim[(2+n)(1/2)^(n+1)]=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询