已知A,B都是锐角,sinA=3/5,求cosB=5/13,cos(A B),tan(A-B)的值

 我来答
faker1718
2022-10-24 · TA获得超过981个赞
知道小有建树答主
回答量:272
采纳率:100%
帮助的人:51.8万
展开全部
A,B都是锐角,则cosA和sinB皆为正.cosA=√(1-sin^2 A)=4/5 sinB=√(1-cos^2 B)=12/13 于是 cos(A+B)= cosAcosB-sinAsinB=20/65-36/65= -16/65 tanA=sinA/cosA=3/4 tanB=sinB/cosB=12/5 tan(A-B)=(tanA-tanB)/(1+tanAtanB)=(3/4-12/5) / [1+(3/4)*(12/5)]= -33/56
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式