余弦定理的证明方法
展开全部
余弦定理的证明方法,内容如下:
如图,在锐角△ABC中,作AD⊥BC于D,则CD=bcosC,AD=bsinC,在△ABD中,由勾股定理,得AB2=BD2+AD2,即
AB2=(a-bcosC)2+(bsinC)2
=a2-2abcosC+b2cos2C+b2sinC2
=a2-2abcosC+b2,即c2=a2+b2-2abcosC。
当C重合于D时,在Rt△ABC中,
∠C=90°,因cosC=0,所以c2=a2+b2。
当C在D左侧时,△ABC为钝角三角形,如图3所
示,∠ACD=180°-C,cos∠ACD=cos(180°-C)=
-cosC,sin∠ACD=sin(180°-C)=sinC,
所以CD=bcos(180°-C)=-bcosC,
AD=b sin(180°-C)=b sinC,
在Rt△ABD中,由勾股定理,得AB2=BD2+AD2,
即AB2=(a-bcosC)2+(bsinC)2
=a2-2abcosC+b2cos2C+b2sinC2
=a2-2abcosC+b2,即c2=a2+b2-2abcosC。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询