已知F1,F2是椭圆X2/9+Y2/5=1的焦点,点P在椭圆上且角F1PF2=60o,求点P的坐标?
1个回答
展开全部
答:
① 设:椭圆的长轴是a,短轴是b,焦距是c,则:
a² - b² = c²
根据 x²/9 + y²/5 = 1
c² = 9 -5 = 4
c = 2
② 求Tan∠F1PF2 表达式:
将x-o-y平面看成复平面,OP = x + i y, F1P = OP - OF1 = x + i y -(-c), F2P = OP - OF2 = x + iy -c
所以:
F1P = x + i y + c
F2P = x + i y - c
复数 F2P,F1P 的夹角与两个复数相除(或一个复数乘以另一个复数的共轭复数)所得复数的辐角等同:
设复数Z满足:
Z = F2P * 共轭F1P = (x + i y + c)*(x - i y -c)
Z = (x + i y + 2)*(x - i y -2)
Z = x² + y² -4 - i 4y
Tan∠F1PF2 = 4y/(x² + y² -4) = + - √3
③ 求P点坐标
4y/(x² + y² -4) = + √3
x²/9 + y²/5 = 1
或
4y/(x² + y² -4) = - √3
x²/9 + y²/5 = 1
解得P点坐标4组值:
1、(+√21/2, +5√3/6) ==>(+2.29129, +1.44338)
2、(+√21/2, -5√3/6) ==>(+2.29129, -1.44338)
3、(-√21/2, +5√3/6) ==>(-2.29129, +1.44338)
4、(-√21/2, -5√3/6) ==>(-2.29129, -1.44338)
---完---
① 设:椭圆的长轴是a,短轴是b,焦距是c,则:
a² - b² = c²
根据 x²/9 + y²/5 = 1
c² = 9 -5 = 4
c = 2
② 求Tan∠F1PF2 表达式:
将x-o-y平面看成复平面,OP = x + i y, F1P = OP - OF1 = x + i y -(-c), F2P = OP - OF2 = x + iy -c
所以:
F1P = x + i y + c
F2P = x + i y - c
复数 F2P,F1P 的夹角与两个复数相除(或一个复数乘以另一个复数的共轭复数)所得复数的辐角等同:
设复数Z满足:
Z = F2P * 共轭F1P = (x + i y + c)*(x - i y -c)
Z = (x + i y + 2)*(x - i y -2)
Z = x² + y² -4 - i 4y
Tan∠F1PF2 = 4y/(x² + y² -4) = + - √3
③ 求P点坐标
4y/(x² + y² -4) = + √3
x²/9 + y²/5 = 1
或
4y/(x² + y² -4) = - √3
x²/9 + y²/5 = 1
解得P点坐标4组值:
1、(+√21/2, +5√3/6) ==>(+2.29129, +1.44338)
2、(+√21/2, -5√3/6) ==>(+2.29129, -1.44338)
3、(-√21/2, +5√3/6) ==>(-2.29129, +1.44338)
4、(-√21/2, -5√3/6) ==>(-2.29129, -1.44338)
---完---
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询