已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的

已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.71828…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的... 已知函数f(x)=ex-ax2-bx-1,其中a,b∈R,e=2.718 28…为自然对数的底数.(1)设g(x)是函数f(x)的导函数,求函数g(x)在区间[0,1]上的最小值;(2)若f(1)=0,函数f(x)在区间(0,1)内有零点,证明:e-2<a<1. 展开
 我来答
月初惜钱星4723
推荐于2016-09-29 · TA获得超过1161个赞
知道答主
回答量:129
采纳率:0%
帮助的人:62.2万
展开全部
(1)由f(x)=ex-ax2-bx-1,得g(x)=f′(x)=ex-2ax-b,所以g′(x)=ex-2a.
当x∈[0,1]时,g′(x)∈[1-2a,e-2a].
当a≤
1
2
时,g′(x)≥0,所以g(x)在[0,1]上单调递增,
因此g(x)在[0,1]上的最小值是g(0)=1-b;
当a≥
e
2
时,g′(x)≤0,所以g(x)在[0,1]上单调递减,
因此g(x)在[0,1]上的最小值是g(1)=e-2a-b;
1
2
<a<
e
2
时,令g′(x)=0,得x=ln(2a)∈(0,1),
所以函数g(x)在区间[0,ln(2a)]上单调递减,在区间(ln(2a),1]上单调递增,
于是,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b.
综上所述,当a≤
1
2
时,g(x)在[0,1]上的最小值是g(0)=1-b;
1
2
<a<
e
2
时,g(x)在[0,1]上的最小值是g(ln(2a))=2a-2aln(2a)-b;
当a≥
e
2
时,g(x)在[0,1]上的最小值是g(1)=e-2a-b.…(5分)
(2)证明:设x0为f(x)在区间(0,1)内的一个零点,则由f(0)=f(x0)=0可知,
f(x)在区间(0,x0)上不可能单调递增,也不可能单调递减.
则g(x)不可能恒为正,也不可能恒为负.
故g(x)在区间(0,x0)内存在零点x1
同理g(x)在区间(x0,1)内存在零点x2.故g(x)在区间(0,1)内至少有两个零点,
由(1)知,当a≤
1
2
时,g(x)在[0,1]递增,故g(x)在(0,1)内至多有1个零点,
当a≥
e
2
时,g(x)在[0,1]递减,故g(x)在(0,1)内至多有1个零点,都不合题意,
所以
1
2
<a<
e
2

此时,g(x)在区间[0,ln(2a)]递减,在区间(ln(2a),1)递增,
因此x1∈(0,ln(2a)),x2∈(ln(2a),1),必有:g(0)=1-b>0,g(1)=e-2a-b>0,
由f(1)=0,得a+b=e-1<2,有g(0)=a-e+2>0,g(1)=1-a>0,解得:e-2<a<1,
所以函数f(x)在区间(0,1)内有零点时,e-2<a<1.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式