∫ln(x+1)/√x的不定积分
3个回答
展开全部
分步积分法
∫ln(x+1)/√x dx
=2∫ln(x+1)d√x
=2ln(x+1)*√x -2∫√x dln(x+1)
=2ln(x+1)*√x -2∫√x /(x+1)dx
对于∫√x /(x+1)dx
令√x=t,x=t^2,dx=2tdt
∫√x /(x+1)dx
=∫t/(t^2+1)*2tdt
=2∫[1-1/(t^2+1)dt
=2t-2arctant+C
因此
∫ln(x+1)/√x dx
=2ln(x+1)*√x -2(2t-2arctant)+C
=2ln(x+1)*√x -2(2√x-2arctan√x)+C
∫ln(x+1)/√x dx
=2∫ln(x+1)d√x
=2ln(x+1)*√x -2∫√x dln(x+1)
=2ln(x+1)*√x -2∫√x /(x+1)dx
对于∫√x /(x+1)dx
令√x=t,x=t^2,dx=2tdt
∫√x /(x+1)dx
=∫t/(t^2+1)*2tdt
=2∫[1-1/(t^2+1)dt
=2t-2arctant+C
因此
∫ln(x+1)/√x dx
=2ln(x+1)*√x -2(2t-2arctant)+C
=2ln(x+1)*√x -2(2√x-2arctan√x)+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询