合同矩阵怎么找?

 我来答
Janedani
推荐于2017-09-12 · 知道合伙人金融证券行家
Janedani
知道合伙人金融证券行家
采纳数:1691 获赞数:21383
努力考取会计从业资格证,努力去回答我所知道的提问,去帮助更多的人。

向TA提问 私信TA
展开全部

合同矩阵:两个实对称矩阵A和B,如存在可逆矩阵P,使得

就称矩阵A和B互为合同矩阵,并且称由A到B的变换叫合同变换。

线性代数,特别是二次型理论中,常常用到矩阵间的合同关系。两个实对称矩阵A和B是合同的,当且仅当存在一个可逆矩阵P,使得对于二次型的矩阵表示来说,做一次非退化的线性替换相当于将二次型的矩阵变为一个与其合同的矩阵。

1 对于任一实系数n元二次型X'AX,要化为标准型,实际上就是要找一个可逆变换X=CY,将它化为Y'BY的形式,其中B为对角阵。则C'AC=B,B就是A的一个合同矩阵了。
2 如果你想要的是将A经合同变换化为B时的变换矩阵C,常用的方法有3种,即配方法、初等变换法和正交变换法。
(1)配方法:如果二次型中含变量xi的平方项,则先将含xi的项集中,按xi配成完全平方,直至都配成平方项;如果二次型不含平方项,但某混合项系数aij不为0,可先通过xi=yi+yj,xj=yi-yj,xk=yk(k不是i或j)这一可逆变换使二次型中出现平方项后,按前一方法配方。
例,f=x1^2+x2^2+3x3^2+4x1x2+2x1x3+2x2x3=(x1^2+4x1x2+2x1x3)+x2^2+3x3^2+2x2x3
=(x1+2x2+x3)^2-3x2^2+2x3^2-2x2x3=……=(x1+2x2+x3)^2-3(x2+1/3*x3)^2+7/3*x3^2;
作变换y1=x1+2x2+x3,y2=x2+1/3*x3,y3=x3,就得标准型f=y1^2-3y2^2+7/3*y3^2.
将上述变换求出逆变换x1=y1-2y2-5/3*y3,x2=y2-1/3*y3,x3=y3,写成矩阵形式X=CY形式,其中C=(1,-2,-5/3;0,1,-1/3;0,0,1)(分号表示矩阵行结束)就是合同变换中的变换矩阵。
例,f=2x1x2-6x1x3,无平方项,则先作变换x1=y1+y2,x2=y1-y2,y3=x3,代入f中
f=2y1^2-2y2^2-6y1y3-6y2y3=2(y1-3/2*y3)^2-2(y2+3/2*y3)^2;
再作变换z1=y1-3/2*y3,z2=y2+3/2*y3,z3=y3用逆变换y1=z1+3/2*z3,y2=z2-3/2*z3,y3=z3,就能把f化成
f=2z1^2-2z2^2这种标准二次型。
最后将再次用的变换写成矩阵形式,X=C1*Y,Y=C2*Z的形式,X=C1*C2*Z,则C=C1*C2就是所求(具体计算略)。
(2)初等变换法:
将二次型的矩阵A与同阶单位阵I合并成n_2n的矩阵(A|I),在这个矩阵中作初等行变换并对子块A再作同样的初等列变换,当将A化为对角阵时,子块I将会变为C’。
(3)正交变换法:
先写出二次型f的tdbl,它是实对称矩阵,求出全部特征值λi(i=1,2,……,n);再对每一特征值写出它所对应的单位特征向量(特征值相同的不同特征向量注意正交化);把上述单位正交特征向量作为矩阵的列构造正交矩阵T,那么正交变换X=TY将会把二次型X'AX化为标准形f=λ1*y1^2+λ2*y2^2+……+λn*yn^2

沁小樱T
2020-12-11 · TA获得超过13.8万个赞
知道答主
回答量:6969
采纳率:37%
帮助的人:475万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
秒懂百科
2020-11-13 · TA获得超过5.9万个赞
知道大有可为答主
回答量:25.3万
采纳率:88%
帮助的人:1.2亿
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
一切切皆寂寞作
推荐于2018-09-26 · TA获得超过7005个赞
知道大有可为答主
回答量:1370
采纳率:0%
帮助的人:2898万
展开全部
1 对于任一实系数n元二次型X'AX,要化为标准型,实际上就是要找一个可逆变换X=CY,将它化为Y'BY的形式,其中B为对角阵。则C'AC=B,B就是A的一个合同矩阵了。
2 如果你想要的是将A经合同变换化为B时的变换矩阵C,常用的方法有3种,即配方法、初等变换法和正交变换法。
(1)配方法:如果二次型中含变量xi的平方项,则先将含xi的项集中,按xi配成完全平方,直至都配成平方项;如果二次型不含平方项,但某混合项系数aij不为0,可先通过xi=yi+yj,xj=yi-yj,xk=yk(k不是i或j)这一可逆变换使二次型中出现平方项后,按前一方法配方。
例,f=x1^2+x2^2+3x3^2+4x1x2+2x1x3+2x2x3=(x1^2+4x1x2+2x1x3)+x2^2+3x3^2+2x2x3
=(x1+2x2+x3)^2-3x2^2+2x3^2-2x2x3=……=(x1+2x2+x3)^2-3(x2+1/3*x3)^2+7/3*x3^2;
作变换y1=x1+2x2+x3,y2=x2+1/3*x3,y3=x3,就得标准型f=y1^2-3y2^2+7/3*y3^2.
将上述变换求出逆变换x1=y1-2y2-5/3*y3,x2=y2-1/3*y3,x3=y3,写成矩阵形式X=CY形式,其中C=(1,-2,-5/3;0,1,-1/3;0,0,1)(分号表示矩阵行结束)就是合同变换中的变换矩阵。
例,f=2x1x2-6x1x3,无平方项,则先作变换x1=y1+y2,x2=y1-y2,y3=x3,代入f中
f=2y1^2-2y2^2-6y1y3-6y2y3=2(y1-3/2*y3)^2-2(y2+3/2*y3)^2;
再作变换z1=y1-3/2*y3,z2=y2+3/2*y3,z3=y3用逆变换y1=z1+3/2*z3,y2=z2-3/2*z3,y3=z3,就能把f化成
f=2z1^2-2z2^2这种标准二次型。
最后将再次用的变换写成矩阵形式,X=C1*Y,Y=C2*Z的形式,X=C1*C2*Z,则C=C1*C2就是所求(具体计算略)。
(2)初等变换法:
将二次型的矩阵A与同阶单位阵I合并成n_2n的矩阵(A|I),在这个矩阵中作初等行变换并对子块A再作同样的初等列变换,当将A化为对角阵时,子块I将会变为C’。
(3)正交变换法:
先写出二次型f的tdbl,它是实对称矩阵,求出全部特征值λi(i=1,2,……,n);再对每一特征值写出它所对应的单位特征向量(特征值相同的不同特征向量注意正交化);把上述单位正交特征向量作为矩阵的列构造正交矩阵T,那么正交变换X=TY将会把二次型X'AX化为标准形f=λ1*y1^2+λ2*y2^2+……+λn*yn^2
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式