当0<x<1时,求函数f(x)=1/2log2∧(3x+1)-log2∧(x+1)最大值
1个回答
展开全部
解:
0<x<1时,
f(x)
=1/2log2∧(3x+1)-log2∧(x+1)
=log2∧[√(3x+1)]-log2∧(x+1)
=log2∧{[√(3x+1)]/(x+1)}
令t=√(3x+1)∈(1,2)
∴x=(t²-1)/3
∴[√(3x+1)]/(x+1)
=3t/(t²+2)
=3/[t+(2/t)]
在t∈(1,2)范围内,t+(2/t)∈[2√2,3)
∴3/[t+(2/t)]∈(1,(3/4)√2]
∴f(x)的最大值为
log2∧[(3/4)√2]=[log2∧3]-(3/2)
祝愉快!
0<x<1时,
f(x)
=1/2log2∧(3x+1)-log2∧(x+1)
=log2∧[√(3x+1)]-log2∧(x+1)
=log2∧{[√(3x+1)]/(x+1)}
令t=√(3x+1)∈(1,2)
∴x=(t²-1)/3
∴[√(3x+1)]/(x+1)
=3t/(t²+2)
=3/[t+(2/t)]
在t∈(1,2)范围内,t+(2/t)∈[2√2,3)
∴3/[t+(2/t)]∈(1,(3/4)√2]
∴f(x)的最大值为
log2∧[(3/4)√2]=[log2∧3]-(3/2)
祝愉快!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询